Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 16 de 16
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Toxics ; 10(11)2022 Oct 29.
Article de Anglais | MEDLINE | ID: mdl-36355942

RÉSUMÉ

Soil remediation is an important practice in the restoration of heavy metal-contaminated soils and reduce the heavy metal exposure of the local population. Here, we investigated the effect of an ex-situ soil washing technique, based on ethylenediaminetetraacetic acid (EDTA) as a chelating agent, on a contaminated Cambisol. Lead, Cd and Zn were investigated in different soil fractions, drainage water and four vegetables from August 2019 to March 2021. Three treatments consisting of (C) contaminated soil, (W) washed soil and (WA) washed soil amended with vermicompost and biochar were investigated in an outdoor raised bed set up. Our results showed that the total and bioavailable metal fractions were significantly reduced but failed to meet Austrian national guideline values. Initial concentrations in the soil leachate increased significantly, especially for Cd. Vegetables grown on the remediated soil took up significantly lower amounts of all heavy metals and were further reduced by the organic amendment, attaining acceptable values within EU guideline values for food safety. Only spinach exceeded the thresholds in all soil treatments. The increase in soil pH and nutrient availability led to significantly higher vegetable yields.

2.
Water Air Soil Pollut ; 232(10): 405, 2021.
Article de Anglais | MEDLINE | ID: mdl-34789952

RÉSUMÉ

The remediation of Pb, Cd, and Zn contaminated soil by ex situ EDTA washing was investigated in two pot experiments. We tested the influence of (i) 0, 0.5, 1.0, and 1.5%wt zero-valent iron (ZVI) and (ii) a combination of 5%wt vermicompost, 2%wt biochar, and 1%wt ZVI on the metal availability in EDTA-washed soil using different soil extracts (Aqua regia, NH4NO3) and plant concentrations. We found that EDTA soil washing significantly reduced the total concentration of Pb, Cd, and Zn and significantly reduced the Cd and Zn plant uptake. Residual EDTA was detected in water extracts causing the formation of highly available Pb-EDTA complexes. While organic amendments had no significant effect on Pb behavior in washed soils, an amendment of ≥ 1%wt ZVI successfully reduced EDTA concentrations, Pb bioavailability, and plant uptake. Our results suggest that Pb-EDTA complexes adsorb to a Fe oxyhydroxide layer, quickly developing on the ZVI surface. The increase in ZVI application strongly decreases Zn concentrations in plant tissue, whereas the uptake of Cd was not reduced, but even slightly increased. Soil washing did not affect plant productivity and organic amendments improved biomass production. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11270-021-05356-0.

3.
Sci Total Environ ; 628-629: 1287-1295, 2018 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-30045550

RÉSUMÉ

In soil, mixed contamination with potentially toxic trace elements and polycyclic aromatic hydrocarbons (PAHs) may persist for a long time due to strong adsorption to the soil matrix and to its toxicity to microorganism. We conducted an incubation batch experiment to test the effect of soil amendments (biochar, gravel sludge, iron oxides) on the immobilisation of trace elements. To monitor microbial degradation, a 13C-PHE (phenanthrene) label was introduced to soil for 13C-PLFA (phospholipid fatty acid) analysis. Soil amendments increased soil pH, reduced mobility of NH4NO3-extractable trace elements Cd and Zn, and increased mobile Cu. A small consortium of PHE degraders was identified mainly in the microbial groups of gram-negative bacteria and actinomycetes. The degradation process of PHE peaked 9days after incubation start. PAH concentrations remained constant in the soil within the 30-day incubation, except for the easily available 13C-PHE in the amended treatment. In order to test the effect of plants and soil amendments under more realistic conditions, we also conducted an outdoor pot experiment with black locust (Robinia pseudoacacia Nyirsegi). Furthermore, soil amendments increased the mobility of soil Cu and As and decreased the mobility of Cd, Pb and Sb. The uptake of trace elements to leaves was low. Σ 16 U.S. EPA PAHs were significantly reduced only in the combined treatment of black locust and soil amendments after 12months of plant growth. Soil amendment-assisted phytoremediation showed a high efficiency in PAH dissipation and may be a useful remediation technique for mixed contaminated soils.

4.
Environ Sci Pollut Res Int ; 25(3): 2506-2516, 2018 Jan.
Article de Anglais | MEDLINE | ID: mdl-29127635

RÉSUMÉ

Besides carbon sequestration and improvement of soil properties, biochar (BC) has increasingly been studied as an amendment to immobilise heavy metals in contaminated soils. In a 2-year experiment, we analysed the effects of poplar BC (P-BC, mixed with compost) and gravel sludge with siderite-bearing material (GSFe) on a Cd-, Pb- and Zn-contaminated soil and on metal concentration in Miscanthus × giganteus shoots under greenhouse and field conditions. In the greenhouse, 1% (m/m) P-BC addition reduced NH4NO3-extractable Cd, Pb and Zn concentrations by 75, 86 and 92%, respectively, at the end of the study. In the leachates, P-BC (1%) could significantly reduce Cd and Zn in both years. In the field, P-BC (3%) induced a reduction of extractable Cd by 87% whereas a combination of P-BC + GSFe reduced Pb by 82% and Zn by 98% in the first year and by 83 and 96% in the second year. In contrast, the metal immobilisation in the soil was hardly reflected in the shoots of Miscanthus × giganteus which generally showed metal concentrations close to control. While Cd was not influenced in both years, Pb and Zn were slightly reduced. Our study confirmed that Miscanthus is an efficient metal excluder, corroborating its suitability for the production of renewable biomass on metal-contaminated soils.


Sujet(s)
Cadmium/métabolisme , Charbon de bois/composition chimique , Assainissement et restauration de l'environnement , Plomb/métabolisme , Poaceae/métabolisme , Polluants du sol/métabolisme , Zinc/métabolisme , Dépollution biologique de l'environnement , Compostage , Saisons
5.
Environ Sci Pollut Res Int ; 25(7): 6364-6377, 2018 Mar.
Article de Anglais | MEDLINE | ID: mdl-29249024

RÉSUMÉ

Co-contaminations of soils with organic and inorganic pollutants are a frequent environmental problem. Due to their toxicity and recalcitrance, the heterogeneous pollutants may persist in soil. The hypothesis of this study was that degradation of polycyclic aromatic hydrocarbons (PAHs) is enhanced if heavy metals in soil are immobilized and their bioavailability reduced. For metal immobilization and enhanced biodegradation, distinct mineral and organic soil amendments (iron oxides, gravel sludge, biochar) were deployed in an incubation batch experiment. The second part of the experiment consisted of a greenhouse pot experiment applying fast-growing and pollution-tolerant woody plants (willow and black locust). Soil amendments initially immobilized NH4NO3-extractable zinc, cadmium, and lead; after 100 days of incubation, soil amendments showed reductions only for cadmium and a tendency to enhance arsenic mobility. In order to monitor the remediation success, a 13C-phenanthrene (PHE) label was applied. 13C-phospholipid fatty acid analysis (13C-PLFA) further enabled the identification of PHE-degrading soil microorganisms. Both experiments exhibited a similar PLFA profile. Gram-negative bacteria (esp. cy17:0, 16:1ω7 + 6, 18:1ω7c) were the most significant microbial group taking up 13C-PHE. Plants effectively increased the label uptake by gram-positive bacteria and increased the biomass of the fungal biomarker, although their contribution to the degradation process was minor. Plants tended to prolong PAH dissipation in soil; at the end of the experiment, however, all treatments showed equally low total PAH concentrations in soil. While black locust plants tended not to take up potentially toxic trace elements, willows accumulated them in their leaves. The results of this study show that the chosen treatments did not enhance the remediation of the experimental soil.


Sujet(s)
Hydrocarbures aromatiques polycycliques/analyse , Robinia/croissance et développement , Salix/croissance et développement , Microbiologie du sol , Polluants du sol/analyse , Oligoéléments/analyse , Autriche , Dépollution biologique de l'environnement , Isotopes du carbone/analyse , Métaux lourds/analyse , Modèles théoriques , Phénanthrènes/analyse , Sol
6.
Sci Total Environ ; 599-600: 1388-1398, 2017 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-28531917

RÉSUMÉ

Gentle remediation options (GRO), i.e. in situ stabilisation, (aided) phytoextraction and (aided) phytostabilisation, were implemented at ten European sites contaminated with trace elements (TE) from various anthropogenic sources: mining, atmospheric fallout, landfill leachates, wood preservatives, dredged-sediments, and dumped wastes. To assess the performance of the GRO options, topsoil was collected from each field trial, potted, and cultivated with lettuce (Lactuca sativa L.) for 48days. Shoot dry weight (DW) yield, photosynthesis efficiency and major element and TE concentrations in the soil pore water and lettuce shoots were measured. GRO implementation had a limited effect on TE concentrations in the soil pore water, although use of multivariate Co-inertia Analysis revealed a clear amelioration effect in phytomanaged soils. Phytomanagement increased shoot DW yield at all industrial and mine sites, whereas in agricultural soils improvements were produced in one out of five sites. Photosynthesis efficiency was less sensitive than changes in shoot biomass and did not discriminate changes in soil conditions. Based on lettuce shoot DW yield, compost amendment followed by phytoextraction yielded better results than phytostabilisation; moreover shoot ionome data proved that, depending on initial soil conditions, recurrent compost application may be required to maintain crop production with common shoot nutrient concentrations.

7.
Environ Sci Pollut Res Int ; 24(8): 7468-7481, 2017 Mar.
Article de Anglais | MEDLINE | ID: mdl-28111720

RÉSUMÉ

In situ stabilization of Cd, Pb, and Zn in an Austrian agricultural soil contaminated by atmospheric depositions from a smelter plant was assessed with a pine bark chip-derived biochar, alone and in combination with either compost or iron grit. Biochar amendment was also trialed in an uncontaminated soil to detect any detrimental effect. The pot experiment consisted in ten soil treatments (% w/w): untreated contaminated soil (Unt); Unt soil amended with biochar alone (1%: B1; 2.5%: B2.5) and in combination: B1 and B2.5 + 5% compost (B1C and B2.5C), B1 and B2.5 + 1% iron grit (B1Z and B2.5Z); uncontaminated soil (Ctrl); Ctrl soil amended with 1 or 2.5% biochar (CtrlB1, CtrlB2.5). After a 3-month reaction period, the soil pore water (SPW) was sampled in potted soils and dwarf beans were grown for a 2-week period. The SPW Cd, Pb, and Zn concentrations decreased in all amended-contaminated soils. The biochar effects increased with its addition rate and its combination with either compost or iron grit. Shoot Cd and Zn removals by beans were reduced and shoot Cd, Pb, and Zn concentrations decreased to common values in all amended soils except the B1 soil. Decreases in the SPW Cd/Pb/Zn concentrations did not improve the root and shoot yields of plants as compared to the Ctrl soil.


Sujet(s)
Charbon de bois/composition chimique , Assainissement et restauration de l'environnement , Fer/composition chimique , Métaux lourds , Polluants du sol , Sol/composition chimique , Bois/composition chimique , Métaux lourds/analyse , Métaux lourds/composition chimique , Métaux lourds/isolement et purification , Polluants du sol/analyse , Polluants du sol/composition chimique , Polluants du sol/isolement et purification
8.
J Hazard Mater ; 325: 17-30, 2017 Mar 05.
Article de Anglais | MEDLINE | ID: mdl-27914288

RÉSUMÉ

This review focuses on the applicability of red mud as an amendment for metal/metalloid-contaminated soil. The varying properties of red muds from different sources are presented as they influence the potentially toxic element (PTE) concentration in amended soil. Experiments conducted worldwide from the laboratory to the field scale are screened and the influencing parameters and processes in soils are highlighted. Overall red mud amendment is likely to contribute to lowering the PTE availability in contaminated soil. This is attributed to the high pH, Fe and Al oxide/oxyhydroxide content of red mud, especially hematite, boehmite, gibbsite and cancrinite phases involved in immobilising metals/metalloids. In most cases red mud amendment resulted in a lowering of metal concentrations in plants. Bacterial activity was intensified in red mud-amended contaminated soil, suggesting the toxicity from PTEs was reduced by red mud, as well as indirect effects due to changes in soil properties. Besides positive effects of red mud amendment, negative effects may also appear (e.g. increased mobility of As, Cu) which require site-specific risk assessments. Red mud remediation of metal/metalloid contaminated sites has the potential benefit of reducing red mud storage and associated problems.

9.
J Environ Manage ; 186(Pt 2): 167-174, 2017 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-27594691

RÉSUMÉ

Extensive contamination of grassland with cadmium (Cd), lead (Pb) and zinc (Zn) is a typical problem close to Pb/Zn smelter sites. The entry of Cd or Pb into the food chain is very likely, as are toxicity effects of Zn in plants. Previous promising results from pot and field experiments showed the high potential of using amendments for immobilisation to reduce metal input into the food chain via crops grown on smelter-contaminated soils at Arnoldstein (Austria) (Friesl et al., 2006). The aim of this study was to find a practical solution for large-scale contaminations in hilly regions that avoids erosion. Field application of amendments without destroying the vegetation cover (grassland) involved two approaches: (a) slurrying (Slu) the amendments into cut gaps in the vegetation cover and (b) injecting (Inj) the amendments through the vegetation cover. Here, we investigate the immobilising and long-term efficiency of treatments [gravel sludge (2.5%) + red mud (0.5%) (GS + RM)]. Risk assessment was based on soil, plant and water samples taken over a period of 10 years. Ammonium-nitrate-extractable Cd was reduced up to 50%, Pb up to 90%, and Zn over 90%. Plant uptake into the grass mixture and narrow leaf plantain was significantly reduced for Cd, Pb, and Zn. Harvesting early in vegetation period can further reduce uptake and meet the threshold for fodder crops. The reduction of these elements in the seepage water in 24 samplings within these 10 years reached 40%, 45% and 50%, respectively. Immobilisation increased microbial biomass and decreased human bioaccessibility for Pb. Our investigation of the long-term efficiency of GS + RM in all treatments shows that the Slu and Inj amendment application techniques have promising potential as a realistic and practical method for extensively contaminated hilly land. Slurrying performed best. We conclude that grassland remediation methods involving tillage are counterproductive from the viewpoint of bioaccessibility and soil protection and therefore should be avoided.


Sujet(s)
Assainissement et restauration de l'environnement/méthodes , Prairie , Métaux lourds , Polluants du sol , Sol/composition chimique , Autriche , Biomasse , Exposition environnementale/analyse , Humains , Plomb/analyse , Plomb/pharmacocinétique , Plomb/toxicité , Études longitudinales , Métaux lourds/analyse , Métaux lourds/pharmacocinétique , Plantes , Eaux d'égout , Microbiologie du sol , Polluants du sol/analyse , Polluants du sol/pharmacocinétique
10.
J Environ Manage ; 171: 101-112, 2016 Apr 15.
Article de Anglais | MEDLINE | ID: mdl-26850677

RÉSUMÉ

Contamination of soil with trace elements, such as Cu, is an important risk management issue. A pot experiment was conducted to determine the effects of three biochars and compost on plant growth and the immobilisation of Cu in a contaminated soil from a site formerly used for wood preservation. To assess Cu mobility, amended soils were analysed using leaching tests pre- and post-incubation, and post-growth. Amended and unamended soils were planted with sunflower, and the resulting plant material was assessed for yield and Cu concentration. All amendments significantly reduced leachable Cu compared to the unamended soil, however, the greatest reductions in leachable Cu were associated with the higher biochar application rate. The greatest improvements in plant yields were obtained with the higher application rate of biochar in combination with compost. The results suggest joint biochar and compost amendment reduces Cu mobility and can support biomass production on Cu-contaminated soils.


Sujet(s)
Charbon de bois/composition chimique , Cuivre/analyse , Helianthus/croissance et développement , Polluants du sol/analyse , Sol/composition chimique , Biomasse , Oligoéléments/analyse , Bois/composition chimique
11.
Int J Phytoremediation ; 17(11): 1005-37, 2015.
Article de Anglais | MEDLINE | ID: mdl-25581041

RÉSUMÉ

The last few decades have seen the rise of Gentle soil Remediation Options (GRO), which notably include in situ contaminant stabilization ("inactivation") and plant-based (generally termed "phytoremediation") options. For trace element (TE)-contaminated sites, GRO aim to either decrease their labile pool and/or total content in the soil, thereby reducing related pollutant linkages. Much research has been dedicated to the screening and selection of TE-tolerant plant species and genotypes for application in GRO. However, the number of field trials demonstrating successful GRO remains well below the number of studies carried out at a greenhouse level. The move from greenhouse to field conditions requires incorporating agronomical knowledge into the remediation process and the ecological restoration of ecosystem services. This review summarizes agronomic practices against their demonstrated or potential positive effect on GRO performance, including plant selection, soil management practices, crop rotation, short rotation coppice, intercropping/row cropping, planting methods and plant densities, harvest and fertilization management, pest and weed control and irrigation management. Potentially negative effects of GRO, e.g., the introduction of potentially invasive species, are also discussed. Lessons learnt from long-term European field case sites are given for aiding the choice of appropriate management practices and plant species.


Sujet(s)
Agriculture , Dépollution biologique de l'environnement , Plantes/métabolisme , Polluants du sol/analyse , Oligoéléments/analyse
12.
Environ Monit Assess ; 187(1): 4093, 2015 Jan.
Article de Anglais | MEDLINE | ID: mdl-25407990

RÉSUMÉ

The objective of this study was to study the utilization of two different woody-derived biochars for Cd(2+), Zn(2+), and Cu(2+) ions separation from aqueous solutions. Physicochemical characterization confirmed the main differences in sorbent surface area and cation-exchange capacity. The maximum cadmium, zinc, and copper sorption capacities were 1.99, 0.97, and 2.50 mg g(-1) for biochar (BC) A; 7.80, 2.23, and 3.65 mg g(-1) for BC B. Sorption processes can be affected by time and pH. The most of sorbed cadmium and zinc were bound on exchangeable fractions and copper oxidizable fractions. Chemical modification and FT-IR analyses confirmed the crucial roles of hydroxyl and mainly carboxyl functional groups in sorption processes of Cd(2+), Zn(2+), and Cu(2+) ions by BC A and BC B. The garden wood rests with leaf mass-derived biochar can be utilized as an effective sorbent for bivalent ions.


Sujet(s)
Cadmium/composition chimique , Charbon de bois/composition chimique , Cuivre/composition chimique , Assainissement et restauration de l'environnement/méthodes , Polluants chimiques de l'eau/composition chimique , Zinc/composition chimique , Adsorption , Cadmium/analyse , Cuivre/analyse , Surveillance de l'environnement , Concentration en ions d'hydrogène , Ions/composition chimique , Spectroscopie infrarouge à transformée de Fourier , Polluants chimiques de l'eau/analyse , Zinc/analyse
13.
Sci Total Environ ; 496: 510-522, 2014 Oct 15.
Article de Anglais | MEDLINE | ID: mdl-25108253

RÉSUMÉ

During the past decades a number of field trials with gentle remediation options (GRO) have been established on trace element (TE) contaminated sites throughout Europe. Each research group selects different methods to assess the remediation success making it difficult to compare efficacy between various sites and treatments. This study aimed at selecting a minimum risk assessment battery combining chemical and ecotoxicological assays for assessing and comparing the effectiveness of GRO implemented in seven European case studies. Two test batteries were pre-selected; a chemical one for quantifying TE exposure in untreated soils and GRO-managed soils and a biological one for characterizing soil functionality and ecotoxicity. Soil samples from field studies representing one of the main GROs (phytoextraction in Belgium, Sweden, Germany and Switzerland, aided phytoextraction in France, and aided phytostabilization or in situ stabilization/phytoexclusion in Poland, France and Austria) were collected and assessed using the selected test batteries. The best correlations were obtained between NH4NO3-extractable, followed by NaNO3-extractable TE and the ecotoxicological responses. Biometrical parameters and biomarkers of dwarf beans were the most responsive indicators for the soil treatments and changes in soil TE exposures. Plant growth was inhibited at the higher extractable TE concentrations, while plant stress enzyme activities increased with the higher TE extractability. Based on these results, a minimum risk assessment battery to compare/biomonitor the sites phytomanaged by GROs might consist of the NH4NO3 extraction and the bean Plantox test including the stress enzyme activities.


Sujet(s)
Assainissement et restauration de l'environnement , Polluants du sol/analyse , Tests de toxicité/méthodes , Oligoéléments/analyse , Dépollution biologique de l'environnement , Écotoxicologie , France , Appréciation des risques/méthodes , Sol , Polluants du sol/toxicité , Oligoéléments/toxicité
14.
J Soils Sediments ; 12(8): 1292-1298, 2012.
Article de Anglais | MEDLINE | ID: mdl-26074728

RÉSUMÉ

PURPOSE: The sorption behavior of the herbicide 4-chloro-2-methylphenoxyacetic acid (MCPA) to three different artificial soil mixtures was investigated. Artificial soils serve as model systems for improving understanding of sorption phenomena. MATERIALS AND METHODS: The soils consisted of quartz, ferrihydrite, illite, montmorillonite, and charcoal. In a previous study, several selected mixtures had been inoculated with organic matter, and microbial aging (incubation) had been performed for different periods of time (3, 12, and 18 months) before conducting the sorption experiments. The effect of this pre-incubation time on the sorption behavior was determined. Interaction of MCPA with soil surfaces was monitored by aqueous phase sorption experiments, using high-performance liquid chromatography/ultraviolet and in selected cases Fourier-transformed infrared spectroscopy. RESULTS AND DISCUSSION: The sorption behavior showed large differences between differently aged soils; Freundlich and linear sorption model fits (with sorption constants Kf , 1/n exponents, and Kd values, respectively) were given for pH = 3 and the unbuffered pH of ∼7. The largest extent of sorption from diluted solutions was found on the surfaces with a pre-incubation time of 3 months. Sorption increased at acidic pH values. CONCLUSIONS: Regarding the influence of aging of artificial soils, the following conclusions were drawn: young artificial soils exhibit stronger sorption at lower concentrations, with a larger Kf value than aged soils. A correlation with organic carbon content was not confirmed. Thus, the sorption characteristics of the soils are more influenced by the aging of the organic carbon than by the organic carbon content itself.

15.
Sci Total Environ ; 407(24): 6132-42, 2009 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-19773018

RÉSUMÉ

A range of tools have been proposed to support decision making in contaminated land remediation. From a European perspective it is clear, however, that there are considerable national differences in the decision support process, and more generally in the extent to which this process supports the selection of less invasive, alternative remediation options such as phytoremediation, in situ immobilisation etc. (referred to here as "gentle" remediation technologies). In this paper we present results from the recently completed European Union ERANET SNOWMAN project SUMATECS (Sustainable Management of Trace Element Contaminated Sites), and critically review available decision support tools in terms of their fitness for purpose for the application of gentle remediation technologies. Stakeholder feedback indicates a lack of knowledge amongst stakeholders of currently available decision support tools. We propose that decision support which focuses on gentle remediation is more strongly incorporated into existing, well-established (national) decision support tools / decision-frameworks, to promote more widespread use and uptake.


Sujet(s)
Techniques d'aide à la décision , Assainissement et restauration de l'environnement/méthodes , Analyse coût-bénéfice/statistiques et données numériques , Allemagne , Logiciel/tendances , Enquêtes et questionnaires , Suède , Royaume-Uni
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...