Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Plant Dis ; 107(8): 2407-2416, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-36691278

RÉSUMÉ

Wheat blast, caused by the fungus Magnaporthe oryzae Triticum pathotype (MoT), is a devastating disease affecting South America, Bangladesh, and Zambia. Resistance to wheat blast has strongly relied on the 2NvS translocation; however, newer MoT isolates have increased aggressiveness, threatening the 2NvS translocation's effectiveness and durability. To identify genomic regions associated with wheat blast resistance, we performed a quantitative trait loci (QTL) mapping study using 187 double-haploid (DH) lines from a cross between the Brazilian wheat cultivars 'TBIO Alvorada' and 'TBIO Sossego', which are moderately resistant and susceptible to blast, respectively. The DH population was evaluated in a greenhouse in Brazil and Bolivia, and field conditions in Bolivia. Contrasting models best explained the relationship between traits evaluated according to differences in disease levels and the presence of the 2NvS. A large effect-locus, derived from 'TBIO Sossego', was identified on chromosome 2AS, which was confirmed to be 2NvS translocation and explained 33.5 to 82.4% of the phenotypic variance. Additional significant loci were identified on 5AL, 1DS, 4DS, 5DL, and 6DL chromosome arms with phenotypic variance <6%, but they were not consistent across trait-environment combinations. QTL pyramiding analyses showed that some specific loci had an additive effect when combined with the 2NvS, suggesting that stacking multiple loci may be an effective strategy to help manage wheat blast. The markers associated with the 2NvS can be used as dominant diagnostic markers for this alien translocation. Additional characterization of these loci using a broader set of MoT isolates is critical to validate their effectiveness against current MoT populations.


Sujet(s)
Locus de caractère quantitatif , Triticum , Locus de caractère quantitatif/génétique , Triticum/génétique , Triticum/microbiologie , Cartographie chromosomique , Brésil
2.
Plant Dis ; 104(1): 35-43, 2020 Jan.
Article de Anglais | MEDLINE | ID: mdl-31660799

RÉSUMÉ

Wheat head blast (WHB), caused by the fungus Magnaporthe oryzae pathotype triticum, is a devastating disease affecting South America and South Asia. Despite 30 years of intensive effort, the 2NVS translocation from Aegilops ventricosa contains the only useful source of resistance to WHB effective against M. oryzae triticum isolates. The objective of this study was to identify non-2NVS sources of resistance to WHB among elite cultivars, breeding lines, landraces, and wild-relative accessions. Over 780 accessions were evaluated under field and greenhouse conditions in Bolivia, greenhouse conditions in Brazil, and at two biosafety level-3 laboratories in the United States. The M. oryzae triticum isolates B-71 (2012), 008 (2015), and 16MoT001 (2016) were used for controlled experiments, while isolate 008 was used for field experiments. Resistant and susceptible checks were included in all experiments. Under field conditions, susceptible spreaders were inoculated at the tillering stage to guarantee sufficient inoculum. Disease incidence and severity were evaluated as the average rating for each 1-m-row plot. Under controlled conditions, heads were inoculated after full emergence and individually rated for percentage of diseased spikelets. The diagnostic marker Ventriup-LN2 was used to test for the presence of the 2NVS translocation. Four non-2NVS spring wheat International Maize and Wheat Improvement Center breeding lines (CM22, CM49, CM52, and CM61) and four wheat wild-relatives (A. tauschii TA10142, TA1624, TA1667, and TA10140) were identified as resistant (<5% of severity) or moderately resistant (5 to <25% severity) to WHB. Experiments conducted at the seedling stage showed little correlation with disease severity at the head stage. M. oryzae triticum isolate 16MoT001 was significantly more aggressive against 2NVS-based varieties. The low frequency of WHB resistance and the increase in aggressiveness of newer M. oryzae triticum isolates highlight the threat that the disease poses to wheat production worldwide and the urgent need to identify and characterize new resistance genes that can be used in breeding for durably resistant varieties.


Sujet(s)
Résistance à la maladie , Triticum , Asie , Bolivie , Brésil , Sélection , Résistance à la maladie/génétique , Maladies des plantes/microbiologie , Triticum/génétique , Triticum/microbiologie
3.
Plant Genome ; 9(2)2016 07.
Article de Anglais | MEDLINE | ID: mdl-27898810

RÉSUMÉ

Wheat ( L.) cultivars must possess suitable end-use quality for release and consumer acceptability. However, breeding for quality traits is often considered a secondary target relative to yield largely because of amount of seed needed and expense. Without testing and selection, many undesirable materials are advanced, expending additional resources. Here, we develop and validate whole-genome prediction models for end-use quality phenotypes in the CIMMYT bread wheat breeding program. Model accuracy was tested using forward prediction on breeding lines ( = 5520) tested in unbalanced yield trials from 2009 to 2015 at Ciudad Obregon, Sonora, Mexico. Quality parameters included test weight, 1000-kernel weight, hardness, grain and flour protein, flour yield, sodium dodecyl sulfate sedimentation, Mixograph and Alveograph performance, and loaf volume. In general, prediction accuracy substantially increased over time as more data was available to train the model. Reflecting practical implementation of genomic selection (GS) in the breeding program, forward prediction accuracies () for quality parameters were assessed in 2015 and ranged from 0.32 (grain hardness) to 0.62 (mixing time). Increased selection intensity was possible with GS since more entries can be genotyped than phenotyped and expected genetic gain was 1.4 to 2.7 times higher across all traits than phenotypic selection. Given the limitations in measuring many lines for quality, we conclude that GS is a powerful tool to facilitate early generation selection for end-use quality in wheat, leaving larger populations for selection on yield during advanced testing and leading to better gain for both quality and yield in bread wheat breeding programs.


Sujet(s)
Génome végétal/génétique , Amélioration des plantes , Sélection génétique , Triticum/génétique , Génotype , Mexique , Modèles génétiques , Phénotype
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE