Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 13 de 13
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Opt Lett ; 49(11): 2962-2965, 2024 Jun 01.
Article de Anglais | MEDLINE | ID: mdl-38824303

RÉSUMÉ

A novel, to the best of our knowledge, and compact fiber-optic hydrogen sensor based on light intensity demodulation and controllable optical heating technology is proposed and experimentally investigated. This system employs three photodetectors for optic signal transformation. The first PD is used to receive a little fraction of the amplified spontaneous emission (ASE) for calibration, and the second PD is utilized to detect optic signal reflected by a single mode fiber deposited with WO3-Pd2Pt-Pt composite film. The last PD is utilized to receive the optical power reflected by the short fiber Bragg grating (SFBG) with a central wavelength located in a steep wavelength range (the intensity decreases approximately linearly with the increase of the wavelength) of the ASE light source. A 980 nm laser and proportion integration differentiation (PID) controller were employed to ensure the hydrogen sensitive film working at an operating temperature of 60°C. This sensing system can display a quick response time of 0.4 s toward 10,000 ppm hydrogen in air. In addition, the detection limit of 5 ppm in air can be achieved with this sensing system. The stability of this sensor can be greatly enhanced with a controllable optical heating system, which can greatly promote its potential application in various fields.

2.
Fish Shellfish Immunol ; 135: 108653, 2023 Apr.
Article de Anglais | MEDLINE | ID: mdl-36868540

RÉSUMÉ

Echinacea purpurea (Linn.) Moench (EP) is a globally popular herbal medicine, which showed effects on growth promotion, antioxidant and immunomodulatory activities in fish culture world widely. However, there are few studies about the effects on miRNAs by EP in fish. The hybrid snakehead fish (Channa maculate♀ × Channa argus ♂) was new important economic specie of freshwater aquaculture in China with high market value and demand while there were only a few reports about its miRNAs. To overview immune-related miRNAs of the hybrid snakehead fish and to further understand the immune regulating mechanism of EP, we herein constructed and analyzed three small RNA libraries of immune tissues including liver, spleen and head kidney of the fish with or without EP treatment via Illumina high-throughput sequencing technology. Results showed that EP can affect the immune activities of fish by the miRNA-regulated ways. Totally, 67 (47 up and 20 down) miRNAs in liver, 138 (55 up and 83 down) miRNAs in spleen, and 251 (15 up and 236 down) miRNAs in spleen were detected, as well as 30, 60, 139 kinds of immune-related miRNAs belonging to 22, 35 and 66 families of the three tissues respectively. The expressions of 8 immune-related miRNA family members were found in all the three tissues, including miR-10, miR-133, miR-22 and etc. Some miRNAs have been identified involved in the innate and adaptive immune responses, such as the miR-125, miR-138, and miR-181 family. Ten miRNA families with antioxidant target genes were also discovered, including miR-125, miR-1306, and miR-138, etc. Results from Gene Ontology (GO) and KEGG pathway analysis further confirmed there are a majority immune response targets of the miRNAs involved in the EP treatment process. Our study deepened understanding roles of miRNAs in fish immune system and provides new ideas for the study of immune mechanism of EP.


Sujet(s)
Echinacea , microARN , Animaux , microARN/génétique , microARN/métabolisme , Antioxydants , Poissons
3.
Fish Shellfish Immunol ; 127: 918-924, 2022 Aug.
Article de Anglais | MEDLINE | ID: mdl-35863536

RÉSUMÉ

PAP (3'-phosphoadenosine 5'-phosphate) is a ubiquitous phosphoric acid and a natural inhibitor of the XRN (5'-3'exoribonuclease) family. It was proved to enter the nucleus through the retrograde signaling pathway and inhibit XRN2 to prevent the degradation of miRNA precursors, thus promoting the anti-oxidation miRNA level in Arabidopsis thaliana. Vitamin E (tocopherol) was proved to promote the accumulation of PAP in the plant, which facilitates PAP into the nucleus to accomplish its antioxidant function. However, the relationship between VE and PAP in animals is unclear. To identify the relationship between VE and PAP and to uncover the function of PAP in fish, we investigated the performance of VE and PAP in Nile tilapia by comparing the antioxidant indicators (SOD, GSH-Px, and CAT), the Keap1-Nrf2 signaling pathway, and the miRNA expression profiles. Results showed that the antioxidant effect of VE and PAP showed similar character either in tilapia liver or in serum: the activities of GSH-Px and CAT of both groups were significantly increased (P < 0.05); the SOD activity of the VE group was significantly increased (P < 0.05), and although the result of the PAP group was not so significant (P > 0.05), PAP improved the SOD level, too. The two groups also showed similar character in the tilapia liver; both did not significantly increase the liver δ-VE content (P > 0.05). However, VE significantly increased the content of α-VE and γ-VE (P < 0.05), while the PAP group was insignificant (P > 0.05). Feed with VE and intraperitoneal injection of PAPs reagent both increased the PAP content in the liver of tilapia, and the effect of the VE group was more significant (P < 0.05) than that of the PAP group (P > 0.05). Both groups reduced the expression of Keap1 and Cullin3 genes and improved the level of HO-1 gene expression, with the improved miRNA level of Nrf2. As a logical result, they decreased the expression of XRN1 and XRN2. By profile sequencing, we further identified some antioxidant closely related miRNAs shared in the VE and PAP groups, including miR-30, miR-24, miR-19b, and miR-100. By comparing the regulating mechanism of VE and PAP of feed supply and intraperitoneal injection, we proved that VE and PAP were closely related in fish; VE promoted the gathering of PAP. The latter retrograded into the nucleus of the fish liver to inhibit the expression of XRN genes and to up-regulate antioxidant miRNA levels as it does in plants. Only the PAP can accomplish the antioxidant activities, while VE promotes the process. Our study laid the foundation for the application of PAP as a new antioxidant agent in fish farming and benefit a further understanding of the VE antioxidant function in fish.


Sujet(s)
Cichlides , microARN , Aliment pour animaux/analyse , Animaux , Antioxydants/métabolisme , Cichlides/génétique , Cichlides/métabolisme , Régime alimentaire , Compléments alimentaires , Protéine-1 de type kelch associée à ECH/métabolisme , microARN/métabolisme , Facteur-2 apparenté à NF-E2/génétique , Facteur-2 apparenté à NF-E2/métabolisme , Stress oxydatif , Transduction du signal , Superoxide dismutase/métabolisme , Vitamine E/métabolisme
4.
J Aquat Anim Health ; 33(4): 220-230, 2021 12.
Article de Anglais | MEDLINE | ID: mdl-34160849

RÉSUMÉ

MicroRNAs (miRNAs) are well-known as powerful regulators of gene expression, with their potential to serve for immunology widely researched in mammals and birds but rarely in fishes. To better understand fish immunology behavior, we herein investigated nine immune-related miRNAs that were reported in other animals, as well as five related cytokine factors and lysozyme (LZM) in the liver, anterior kidney, and spleen of Channel Catfish Ictalurus punctatus after being stimulated by lipopolysaccharides (LPS) and ß-glucan. We also predicated the potential targets of these miRNAs via bioinformatics and further investigated nine of them via quantitative real-time PCR. Results showed that expressions of the nine miRNAs were quickly changed in varying extent after stimulation by LPS, especially for miR-122, miR-142a, miR-155, and miR-223, which were significantly changed in spleen, and the same occurred for the LZM and three cytokine factors TNF-α, IFN-γ and TLR2. Compared with LPS, although most of the miRNAs and the cytokine genes were also affected by ß-glucan, the extent of the effect was weak. Bioinformatics analysis revealed many immune-related targets of the miRNAs, with some of them reported by previous studies. For the nine investigated target genes, seven targets (77.8%) were significantly upregulated after the stimulation of LPS. It therefore can be inferred that the immune-related miRNAs, LZM, and cytokine factors elicited quick immune responses of Channel Catfish to LPS stimulation as in other animals, but the regulation mechanism of miRNAs might be complex and diverse. This research will contribute to a better understanding will support further immunology research in fishes.


Sujet(s)
Ictaluridae , microARN , bêta-Glucanes , Animaux , Cytokines/génétique , Immunité , Lipopolysaccharides/pharmacologie , microARN/génétique , bêta-Glucanes/pharmacologie
5.
ACS Appl Mater Interfaces ; 13(13): 15383-15390, 2021 Apr 07.
Article de Anglais | MEDLINE | ID: mdl-33764046

RÉSUMÉ

Compared with the widely reported MAPbBr3 single crystals, formamidinium-based (FA-based) hybrid perovskites FAPbBr3 (FPB) with superior chemical and structure stability are expected to be more efficient and perform as more reliable radiation detectors at room temperature. Here, we employ an improved inverse temperature crystallization method to grow FPB bulk single crystals, where issues associated with the retrograde solubility behavior are resolved. A crystal growth phase diagram has been proposed, and accordingly, growth parameters are optimized to avoid the formation of NH4Pb2Br5 secondary phase. The resulting FPB crystals exhibit a high resistivity of 2.8 × 109 Ω·cm and high electron and hole mobility-lifetime products (µτ) of 8.0 × 10-4 and 1.1 × 10-3 cm2·V-1, respectively. Simultaneously, the electron and hole mobilities (µ) are evaluated to be 22.2 and 66.1 cm2·V-1·s-1, respectively, based on the time-of-flight technique. Furthermore, a Au/FPB SC/Au detector is constructed that demonstrates a resolvable gamma peak from 59.5 keV 241Am γ-rays at room temperature for the first time. An energy resolution of 40.1% is obtained at 30 V by collecting the hole signals. These results demonstrate the great potential of FAPbBr3 as a hybrid material for γ-ray spectroscopy and imaging.

6.
Fish Shellfish Immunol ; 106: 28-35, 2020 Nov.
Article de Anglais | MEDLINE | ID: mdl-32707297

RÉSUMÉ

MiR-155 is reported as immune regulated miRNA in mammalian corresponding to immunity, antibacterial and antiviral effects regulation. However, the roles and mechanisms of the miRNA have remained largely undefined. We herein comprehensively investigated the functions of miR-155 in vitro and in vivo by miR-155 mimics, agomir and antagomir in Cyprinus carpio and Ictalurus punctatus, with the target genes in the SOSC1 pathway certified in I. punctatus via luciferase reporter assays. Results showed that the miR-155 regulated the expressions of cytokines, including TNF-α, IFN-γ, IL-1ß, IL-6 and IL-10. Further research confirmed SOSC1 as one of the targets of the miRNA, and the JAK1/STAT3/SOSC1 signal pathway involved in the miR-155 effects on the expression of immune cytokines as well. Additionally, the changes of TLR2 in fish may also be related to miR-155 along with its target SOCS1, and the TLR2/MyD88 pathway may partly participate in the effects of the miR-155 on the cytokines. The research here confirmed that the miR-155 can regulate cytokines expression by SOSC1 signal pathways of fish in vitro and in vivo, which would provide resources for understanding and studying about immune regulation in fish.


Sujet(s)
Carpes (poisson)/génétique , Cytokines/génétique , Protéines de poisson/génétique , Régulation de l'expression des gènes/immunologie , Ictaluridae/génétique , microARN/génétique , Animaux , Carpes (poisson)/immunologie , Cytokines/immunologie , Protéines de poisson/immunologie , Ictaluridae/immunologie , microARN/immunologie , Transduction du signal/immunologie
7.
Parasit Vectors ; 7: 99, 2014 Mar 10.
Article de Anglais | MEDLINE | ID: mdl-24612519

RÉSUMÉ

BACKGROUND: Trichomonas gallinae is a protozoan parasite causing trichomonosis in many species of domestic poultry and birds world-wide. microRNAs (miRNAs) are a class of small non-coding RNAs that play key roles in gene regulation. However, no miRNAs have been characterized from T. gallinae. METHODS: Here, we investigated the global miRNA profile of this parasite by high throughput sequencing technology, bioinformatics platform analysis and quantitative RT-PCR. RESULTS: Three miRNA candidates, with typical precursor stem-loop structures, were identified from 11.13 million raw sequencing reads. Three miRNAs, Tga-miR-1, Tga-miR-2 and Tga-miR-3 had no homologues in publically available miRNA databases, suggesting that they may be T. gallinae-specific. Tga-miR-2 and Tga-miR-3 occupied only one location each on the reference genome, while Tga-miR-1 was found at 3 locations. CONCLUSIONS: The results of the present study provided a sound basis for the further understanding of gene regulation in this parasite of animal health significance, with the potential to inform the development of novel control reagents and strategies and also inform a more in-depth understanding of the evolution of miRNAs.


Sujet(s)
Maladies des oiseaux/parasitologie , Columbidae/parasitologie , Génome de protozoaire/génétique , microARN/génétique , Trichomonase/médecine vétérinaire , Trichomonas/génétique , Animaux , Biologie informatique , Séquençage nucléotidique à haut débit , microARN/composition chimique , Conformation d'acide nucléique , ARN des protozoaires/composition chimique , ARN des protozoaires/génétique , Réaction de polymérisation en chaine en temps réel/médecine vétérinaire , Analyse de séquence d'ARN/médecine vétérinaire , Trichomonas/isolement et purification , Trichomonase/parasitologie
8.
Fish Shellfish Immunol ; 34(6): 1470-5, 2013 Jun.
Article de Anglais | MEDLINE | ID: mdl-23542605

RÉSUMÉ

Currently, microRNAs (miRNAs) are known to regulate cellular processes such as apoptosis, differentiation, cell cycle, and immune functions, and their expression can be altered by distinct stress conditions, such as oxidative stress. In immune systems of fish, vitamin E (VE) has a defined role as an antioxidant. In order to understand the molecular mechanism of vitamin E defending from oxidative stress, three groups of juvenile Nile tilapia (Oreochromis niloticus) (initial weight 3.25 ± 0.02 g) were fed to satiation with 3 semi-purified diets containing VE (DL-α-tocopherol acetate) of 0, 50, and 2500 mg/kg supplementation, respectively, with the expressions of eight miRNAs (miR-21, miR-223, miR-146a, miR-125b, miR-181a, miR-16, miR-155 and miR-122) in the liver of tilapia subsequently detected after 8-week growth experiment. Results showed that VE-deficient (0 mg/kg supplementation) decreased the activity of superoxide dismutase (SOD), and decreased the expressions of miR-223, miR-146a, miR-16 and miR-122, while excessive supplementation of VE (2500 mg/kg) decreased SOD activity and increased the expressions of all the eight miRNAs. The targets of the eight miRNAs were further predicated with bioinformatic approach and the possible regulating mechanisms of VE via miRNAs were analyzed. The present study confirmed that the differences in dietary VE affected expression of hepatic miRNAs which may partly demonstrate the molecular mechanism of VE, and the new idea of introducing miRNAs into research will provide the basic data for researches of molecular nutrition.


Sujet(s)
Antioxydants/administration et posologie , Cichlides/génétique , Régulation de l'expression des gènes , microARN/génétique , Stress oxydatif/effets des médicaments et des substances chimiques , Vitamine E/administration et posologie , Aliment pour animaux/analyse , Animaux , Cichlides/métabolisme , Compléments alimentaires/analyse , Relation dose-effet des médicaments , Protéines de poisson/génétique , Protéines de poisson/métabolisme , Foie/enzymologie , Foie/métabolisme , microARN/métabolisme , Réaction de polymérisation en chaine en temps réel/médecine vétérinaire , Superoxide dismutase/génétique , Superoxide dismutase/métabolisme
9.
Parasit Vectors ; 6: 25, 2013 Jan 25.
Article de Anglais | MEDLINE | ID: mdl-23351883

RÉSUMÉ

BACKGROUND: Eurytrema pancreaticum is one of the most common flukes, which mainly infects ruminants globally and infects human beings accidentally; causing eurytremiasis that has high veterinary and economic importance. MicroRNAs (miRNAs) are small non-coding RNAs and are now considered as a key mechanism of gene regulation at the post-transcription level. METHODS: We investigated the global miRNA expression profile of E. pancreaticum adults using next-generation sequencing technology combined with real-time quantitative PCR. RESULTS: By using the genome of the closely-related species Schistosoma japonicum as reference, we obtained 27 miRNA candidates out of 16.45 million raw sequencing reads, with 13 of them found as known miRNAs in S. japonicum and/or S. mansoni, and the remaining 14 miRNAs were considered as novel. Five out of the 13 known miRNAs coming from one family named as sja-miR-2, including family members from miR-2a to miR-2e. Targets of 19 miRNAs were successfully predicated out of the 17401 mRNA and EST non-redundant sequences of S. japonicum. It was found that a significant high number of targets were related to "chch domain-containing protein mitochondrial precursor" (n = 29), "small subunit ribosomal protein s30e" (n = 21), and "insulin-induced gene 1 protein" (n = 9). Besides, "egg protein cp3842" (n = 2), "fumarate hydratase" (n = 2), "ubiquitin-conjugating enzyme" (n = 2), and "sperm-associated antigen 6" (n = 1) were also found as targets of the miRNAs of E. pancreaticum. CONCLUSIONS: The present study represents the first global characterization of E. pancreaticum miRNAs, which provides novel resources for a better understanding of the parasite, which, in turn, has implications for the effective control of the disease it causes.


Sujet(s)
Dicrocoeliidae/génétique , microARN/génétique , ARN des helminthes/génétique , Animaux , Étiquettes de séquences exprimées , Analyse de profil d'expression de gènes , Séquençage nucléotidique à haut débit , Réaction de polymérisation en chaine en temps réel
10.
Parasitol Res ; 112(3): 1189-95, 2013 Mar.
Article de Anglais | MEDLINE | ID: mdl-23306386

RÉSUMÉ

Ascaris nematodes, which cause ascariasis in humans and pigs, are among the most important nematodes from both health and economic perspectives. microRNA (miRNA) is now recognized as key regulator of gene expression at posttranscription level. The public availability of the genome and transcripts of Ascaris suum provides powerful resources for the research of miRNA profiles of the parasite. Therefore, we investigated and compared the miRNA profiles of male and female adult A. suum using Solexa deep sequencing combined with bioinformatic analysis and stem-loop reverse transcription polymerase chain reaction. Deep sequencing of small RNAs yielded 11.71 and 11.72 million raw reads from male and female adults of A. suum, respectively. Analysis showed that the noncoding RNA of the two genders, including tRNA, rRNA, snRNA, and snoRNA, were similar. By mapping to the A. suum genome, we obtained 494 and 505 miRNA candidates from the female and male parasite, respectively, and 87 and 82 of miRNA candidates were consistent with A. suum miRNAs deposited in the miRBase database. Among the miRNA candidates, 154 were shared by the two genders, and 340 and 351 were female and male specific with their target numbers ranged from one to thousands, respectively. Functional prediction revealed a set of elongation factors, heat shock proteins, and growth factors from the targets of gender-specific miRNAs, which were essential for the development of the parasite. Moreover, major sperm protein and nematode sperm cell motility protein were found in targets of the male-specific miRNAs. Ovarian message protein was found in targets of the female-specific miRNAs. Enrichment analysis revealed significant differences among Gene Ontology terms of miRNA targets of the two genders, such as electron carrier and biological adhesion process. The regulating functions of gender-specific miRNAs was therefore not only related to the fundamental functions of cells but also were essential to the germ development of the parasite. The present study provides a framework for further research of Ascaris miRNAs, and consequently leads to the development of potential nucleotide vaccines against Ascaris of human and animal health significance.


Sujet(s)
Ascaris suum/génétique , microARN/analyse , microARN/génétique , Animaux , Biologie informatique , Femelle , Séquençage nucléotidique à haut débit , Mâle , Analyse de séquence d'ADN , Sexe
11.
IEEE Int Conf Robot Autom ; 2013: 725-732, 2013 May 06.
Article de Anglais | MEDLINE | ID: mdl-26279960

RÉSUMÉ

We present a new method for continuously and accurately estimating the shape of a continuum robot during a medical procedure using a small number of X-ray projection images (e.g., radiographs or fluoroscopy images). Continuum robots have curvilinear structure, enabling them to maneuver through constrained spaces by bending around obstacles. Accurately estimating the robot's shape continuously over time is crucial for the success of procedures that require avoidance of anatomical obstacles and sensitive tissues. Online shape estimation of a continuum robot is complicated by uncertainty in its kinematic model, movement of the robot during the procedure, noise in X-ray images, and the clinical need to minimize the number of X-ray images acquired. Our new method integrates kinematics models of the robot with data extracted from an optimally selected set of X-ray projection images. Our method represents the shape of the continuum robot over time as a deformable surface which can be described as a linear combination of time and space basis functions. We take advantage of probabilistic priors and numeric optimization to select optimal camera configurations, thus minimizing the expected shape estimation error. We evaluate our method using simulated concentric tube robot procedures and demonstrate that obtaining between 3 and 10 images from viewpoints selected by our method enables online shape estimation with errors significantly lower than using the kinematic model alone or using randomly spaced viewpoints.

12.
PLoS One ; 7(10): e47001, 2012.
Article de Anglais | MEDLINE | ID: mdl-23071694

RÉSUMÉ

The neglected blood flukes Orientobilharzia spp. belonging to the Platyhelminthes, infect animals in a number of countries of the world, and cause cercarial dermatitis in humans, as well as significant diseases and even death in economically-important animals. MicroRNAs (miRNAs) are now considered to be a key mechanism of gene regulation. Herein, we investigated the global miRNA expression profile of adult O. turkestanicum using next-generation sequencing technology and real-time quantitative PCR, to gain further information on the role of these molecules in host invasion and the parasitic lifestyle of this species. A total of 13.48 million high quality reads were obtained out of 13.78 million raw sequencing reads, with 828 expressed miRNAs identified. Phylogenetic analysis showed that the miRNAs of O. turkestanicum were still rapidly evolving and there was a "directed mutation" pattern compared with that of other species. Target mRNAs were successfully predicted to 518 miRNAs. These targets included energy metabolism, transcription initiation factors, signal transduction, growth factor receptors. miRNAs targeting egg proteins, including major egg antigen p40, and heat shock proteins were also found. Enrichment analysis indicated enrichment for mRNAs involved in catalytic, binding, transcription regulators and translation regulators. The present study represented the first large-scale characterization of O. turkestanicum miRNAs, which provides novel resources for better understanding the complex biology of this zoonotic parasite, which, in turn, has implications for the effective control of the disease it causes.


Sujet(s)
microARN , Schistosomatidae/génétique , Animaux , Séquence nucléotidique , Régulation de l'expression des gènes , Humains , Souris , microARN/composition chimique , Données de séquences moléculaires , Conformation d'acide nucléique , Phylogenèse , Réaction de polymérisation en chaine en temps réel , Similitude de séquences d'acides nucléiques , Ovis/parasitologie
13.
PLoS One ; 7(12): e53387, 2012.
Article de Anglais | MEDLINE | ID: mdl-23300925

RÉSUMÉ

MicroRNAs (miRNAs) are key regulators of gene expression at the post-transcription level. The present study specifically explored and compared the miRNA expression profiles of F. gigantica and F. hepatica using an integrated sequencing and bioinformatics platform and quantitative real-time PCR. Nineteen and 16 miRNA candidates were identified from F. gigantica and F. hepatica, respectively. The two parasites shared 11 miRNAs, with 8 also showing similarity to miRNAs of Schistosoma japonicum. Another 8 miRNAs were identified as F. gigantica-specific and 5 as F. hepatica-specific, most of which were novel. Predicted target analysis with 11465 mRNA and EST sequences of F. hepatica and F. gigantica revealed that all of the miRNAs had more than one target, ranging from 2 to 398 with an average of 51 targets. Some functions of the predicted targets were only found in F. gigantica, such as "transcription regulator", while some others were only found in F. hepatica, such as "reproduction" and "response to stimulus", indicating the different metabolism and gene regulation patterns of the two parasites. The present study represents the first global comparative characterization of miRNA expression profiles of F. gigantica and F. hepatica, which has provided novel valuable resources for a better understanding of the two zoonotic trematodes.


Sujet(s)
Maladies des bovins/parasitologie , Fasciola/génétique , Fasciolase/médecine vétérinaire , Analyse de profil d'expression de gènes , microARN/génétique , Animaux , Bovins , Fasciola/métabolisme , Fasciolase/parasitologie , microARN/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...