Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
ACS Omega ; 9(8): 9792-9802, 2024 Feb 27.
Article de Anglais | MEDLINE | ID: mdl-38434849

RÉSUMÉ

Molybdenum disulfide shows promise as an anode material for lithium-ion batteries. However, its commercial potential has been constrained due to the poor conductivity and significant volume expansion during the charge/discharge cycles. To address these issues, in this study, N-doped MoS2/C composites (NMC) were prepared via an enhanced hydrothermal method, using ammonium molybdate and thiourea as molybdenum and sulfur sources, respectively. Polyethylene glycol 400 (PEG400) and polyvinylpyrrolidone (PVP) were added in the hydrothermal procedure as soft template surfactants and nitrogen/carbon sources. The crystal structure, morphology, elemental composition, and surface valence state of the N-doped MoS2/C composites were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM), and X-ray photoelectron spectroscopy (XPS), respectively. The results indicate that the NMC prepared by this method are spherical particles with a nanoflower-like structure composed of MoS2 flakes, having an average particle size of about 500 nm. XPS analysis shows the existence of C and N elements in the samples as C-N, C-C, and pyrrolic N. As anodes for LIBs, the NMC without annealing deliver an initial discharge capacity of 548.2 mAh·g-1 at a current density of 500 mA·g-1. However, this capacity decays in the following cycles with a discharge capacity of 66.4 mAh·g-1 and a capacity retention rate of only 12% after 50 cycles. In contrast, the electrochemical properties of the counterparts are enhanced after annealing, which exhibits an initial discharge capacity of 575.9 mAh·g-1 and an ultimate discharge capacity of 669.2 mAh·g-1 after 70 cycles. The capacity retention rate decreases initially but later increases and elevated afterward to reach 116% at the 70th cycle, indicating an improvement in charge-discharge performance. The specimens after annealing have a smaller impedance, which indicates better charge transport and lithium-ion diffusion performance.

2.
Nanotechnology ; 33(6)2021 Nov 16.
Article de Anglais | MEDLINE | ID: mdl-34649227

RÉSUMÉ

Peptide-based supramolecular self-assembly from peptide monomers into well-organized nanostructures, has attracted extensive attentions towards biomedical and biotechnological applications in recent decades. This spontaneous and reversible assembly process involving non-covalent bonding interactions can be artificially regulated. In this review, we have elaborated different strategies to modulate the peptide self-assembly through tuning the physicochemical and environmental conditions, includingpH, light, temperature, solvent, and enzyme. Detailed introduction of biological applications and future potential of the peptide-based nano-assemblies will also be given.


Sujet(s)
Biotechnologie , Nanostructures , Nanotechnologie , Peptides/composition chimique , Animaux , Lignée cellulaire tumorale , Humains , Concentration en ions d'hydrogène , Souris , Nanostructures/composition chimique , Nanostructures/ultrastructure
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...