Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
bioRxiv ; 2024 May 24.
Article de Anglais | MEDLINE | ID: mdl-38826300

RÉSUMÉ

Cell fusion is a fundamental process in the development of multicellular organisms, yet its impact on gene regulation, particularly during crucial developmental stages, remains poorly understood. The Caenorhabditis elegans epidermis comprises 8-10 syncytial cells, with the largest integrating 139 individual nuclei through cell-cell fusion governed by the fusogenic protein EFF-1. To explore the effects of cell fusion on developmental progression and associated gene expression changes, we conducted transcriptomic analyses of eff-1 fusion-deficient mutants. Our RNAseq findings showed widespread transcriptomic changes that were enriched for epidermal genes and key molecular pathways involved in epidermal function during larval development. Subsequent single-molecule fluorescence in situ hybridization validated the altered expression of mRNA transcripts, confirming quantifiable changes in gene expression in the absence of embryonic epidermal fusion. These results underscore the significance of cell-cell fusion in shaping transcriptional programs during development and raise questions regarding the precise identities and specialized functions of different subclasses of nuclei within developing syncytial cells and tissues.

2.
Proc Natl Acad Sci U S A ; 119(32): e2116956119, 2022 08 09.
Article de Anglais | MEDLINE | ID: mdl-35930666

RÉSUMÉ

Histone variants, which can be expressed outside of S-phase and deposited DNA synthesis-independently, provide long-term histone replacement in postmitotic cells, including neurons. Beyond replenishment, histone variants also play active roles in gene regulation by modulating chromatin states or enabling nucleosome turnover. Here, we uncover crucial roles for the histone H3 variant H3.3 in neuronal development. We find that newborn cortical excitatory neurons, which have only just completed replication-coupled deposition of canonical H3.1 and H3.2, substantially accumulate H3.3 immediately postmitosis. Codeletion of H3.3-encoding genes H3f3a and H3f3b from newly postmitotic neurons abrogates H3.3 accumulation, markedly alters the histone posttranslational modification landscape, and causes widespread disruptions to the establishment of the neuronal transcriptome. These changes coincide with developmental phenotypes in neuronal identities and axon projections. Thus, preexisting, replication-dependent histones are insufficient for establishing neuronal chromatin and transcriptome; de novo H3.3 is required. Stage-dependent deletion of H3f3a and H3f3b from 1) cycling neural progenitor cells, 2) neurons immediately postmitosis, or 3) several days later, reveals the first postmitotic days to be a critical window for de novo H3.3. After H3.3 accumulation within this developmental window, codeletion of H3f3a and H3f3b does not lead to immediate H3.3 loss, but causes progressive H3.3 depletion over several months without widespread transcriptional disruptions or cellular phenotypes. Our study thus uncovers key developmental roles for de novo H3.3 in establishing neuronal chromatin, transcriptome, identity, and connectivity immediately postmitosis that are distinct from its role in maintaining total histone H3 levels over the neuronal lifespan.


Sujet(s)
Cortex cérébral , Chromatine , Histone , Neurogenèse , Animaux , Cortex cérébral/croissance et développement , Cortex cérébral/métabolisme , Chromatine/génétique , Chromatine/métabolisme , Histone/génétique , Histone/métabolisme , Souris , Mitose , Neurones/métabolisme , Nucléosomes/génétique , Transcriptome
3.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Article de Anglais | MEDLINE | ID: mdl-34011608

RÉSUMÉ

Loss-of-function mutations in chromatin remodeler gene ARID1A are a cause of Coffin-Siris syndrome, a developmental disorder characterized by dysgenesis of corpus callosum. Here, we characterize Arid1a function during cortical development and find unexpectedly selective roles for Arid1a in subplate neurons (SPNs). SPNs, strategically positioned at the interface of cortical gray and white matter, orchestrate multiple developmental processes indispensable for neural circuit wiring. We find that pancortical deletion of Arid1a leads to extensive mistargeting of intracortical axons and agenesis of corpus callosum. Sparse Arid1a deletion, however, does not autonomously misroute callosal axons, implicating noncell-autonomous Arid1a functions in axon guidance. Supporting this possibility, the ascending axons of thalamocortical neurons, which are not autonomously affected by cortical Arid1a deletion, are also disrupted in their pathfinding into cortex and innervation of whisker barrels. Coincident with these miswiring phenotypes, which are reminiscent of subplate ablation, we unbiasedly find a selective loss of SPN gene expression following Arid1a deletion. In addition, multiple characteristics of SPNs crucial to their wiring functions, including subplate organization, subplate axon-thalamocortical axon cofasciculation ("handshake"), and extracellular matrix, are severely disrupted. To empirically test Arid1a sufficiency in subplate, we generate a cortical plate deletion of Arid1a that spares SPNs. In this model, subplate Arid1a expression is sufficient for subplate organization, subplate axon-thalamocortical axon cofasciculation, and subplate extracellular matrix. Consistent with these wiring functions, subplate Arid1a sufficiently enables normal callosum formation, thalamocortical axon targeting, and whisker barrel development. Thus, Arid1a is a multifunctional regulator of subplate-dependent guidance mechanisms essential to cortical circuit wiring.


Sujet(s)
Cortex cérébral/métabolisme , Chromatine/composition chimique , Corps calleux/métabolisme , Protéines de liaison à l'ADN/génétique , Mutation perte de fonction , Thalamus/métabolisme , Facteurs de transcription/génétique , Malformations multiples/génétique , Malformations multiples/métabolisme , Malformations multiples/anatomopathologie , Animaux , Cortex cérébral/anatomopathologie , Chromatine/métabolisme , Connectome , Corps calleux/anatomopathologie , Protéines de liaison à l'ADN/déficit , Face/malformations , Face/anatomopathologie , Délétion de gène , Régulation de l'expression des gènes , Substance grise/métabolisme , Substance grise/anatomopathologie , Anomalies morphologiques congénitales de la main/génétique , Anomalies morphologiques congénitales de la main/métabolisme , Anomalies morphologiques congénitales de la main/anatomopathologie , Humains , Déficience intellectuelle/génétique , Déficience intellectuelle/métabolisme , Déficience intellectuelle/anatomopathologie , Souris , Souris transgéniques , Micrognathisme/génétique , Micrognathisme/métabolisme , Micrognathisme/anatomopathologie , Cou/malformations , Cou/anatomopathologie , Voies nerveuses/métabolisme , Voies nerveuses/anatomopathologie , Neurones/métabolisme , Neurones/anatomopathologie , Thalamus/anatomopathologie , Facteurs de transcription/déficit , Vibrisses/métabolisme , Vibrisses/anatomopathologie , Substance blanche/métabolisme , Substance blanche/anatomopathologie
4.
Nat Commun ; 11(1): 3839, 2020 07 31.
Article de Anglais | MEDLINE | ID: mdl-32737294

RÉSUMÉ

Chromatin regulates spatiotemporal gene expression during neurodevelopment, but it also mediates DNA damage repair essential to proliferating neural progenitor cells (NPCs). Here, we uncover molecularly dissociable roles for nucleosome remodeler Ino80 in chromatin-mediated transcriptional regulation and genome maintenance in corticogenesis. We find that conditional Ino80 deletion from cortical NPCs impairs DNA double-strand break (DSB) repair, triggering p53-dependent apoptosis and microcephaly. Using an in vivo DSB repair pathway assay, we find that Ino80 is selectively required for homologous recombination (HR) DNA repair, which is mechanistically distinct from Ino80 function in YY1-associated transcription. Unexpectedly, sensitivity to loss of Ino80-mediated HR is dependent on NPC division mode: Ino80 deletion leads to unrepaired DNA breaks and apoptosis in symmetric NPC-NPC divisions, but not in asymmetric neurogenic divisions. This division mode dependence is phenocopied following conditional deletion of HR gene Brca2. Thus, distinct modes of NPC division have divergent requirements for Ino80-dependent HR DNA repair.


Sujet(s)
ATPases associated with diverse cellular activities/génétique , Protéine BRCA2/génétique , Chromatine/composition chimique , Protéines de liaison à l'ADN/génétique , Cellules souches neurales/métabolisme , Neurogenèse/génétique , Réparation de l'ADN par recombinaison , ATPases associated with diverse cellular activities/déficit , Animaux , Apoptose/génétique , Protéine BRCA2/déficit , Division cellulaire , Chromatine/métabolisme , Assemblage et désassemblage de la chromatine , ADN/génétique , ADN/métabolisme , Cassures double-brin de l'ADN , Protéines de liaison à l'ADN/déficit , Embryon de mammifère , Régulation de l'expression des gènes au cours du développement , Souris , Souris transgéniques , Néocortex/cytologie , Néocortex/croissance et développement , Néocortex/métabolisme , Cellules souches neurales/cytologie , Transduction du signal , Protéine p53 suppresseur de tumeur/génétique , Protéine p53 suppresseur de tumeur/métabolisme , Facteur de transcription YY1/génétique , Facteur de transcription YY1/métabolisme
5.
Proc Natl Acad Sci U S A ; 112(5): 1607-12, 2015 Feb 03.
Article de Anglais | MEDLINE | ID: mdl-25605929

RÉSUMÉ

Hibernating mammals possess a unique ability to reduce their body temperature to ambient levels, which can be as low as -2.9 °C, by active down-regulation of metabolism. Despite such a depressed physiologic phenotype, hibernators still maintain activity in their nervous systems, as evidenced by their continued sensitivity to auditory, tactile, and thermal stimulation. The molecular mechanisms that underlie this adaptation remain unknown. We report, using differential transcriptomics alongside immunohistologic and biochemical analyses, that neurons from thirteen-lined ground squirrels (Ictidomys tridecemlineatus) express mitochondrial uncoupling protein 1 (UCP1). The expression changes seasonally, with higher expression during hibernation compared with the summer active state. Functional and pharmacologic analyses show that squirrel UCP1 acts as the typical thermogenic protein in vitro. Accordingly, we found that mitochondria isolated from torpid squirrel brain show a high level of palmitate-induced uncoupling. Furthermore, torpid squirrels during the hibernation season keep their brain temperature significantly elevated above ambient temperature and that of the rest of the body, including brown adipose tissue. Together, our findings suggest that UCP1 contributes to local thermogenesis in the squirrel brain, and thus supports nervous tissue function at low body temperature during hibernation.


Sujet(s)
Hibernation , Canaux ioniques/physiologie , Protéines mitochondriales/physiologie , Neurones/métabolisme , Thermogenèse , Animaux , Canaux ioniques/métabolisme , Mitochondries/métabolisme , Protéines mitochondriales/métabolisme , Sciuridae , Protéine-1 de découplage
6.
Proc Natl Acad Sci U S A ; 111(41): 14941-6, 2014 Oct 14.
Article de Anglais | MEDLINE | ID: mdl-25246547

RÉSUMÉ

Relying almost exclusively on their acute sense of touch, tactile-foraging birds can feed in murky water, but the cellular mechanism is unknown. Mechanical stimuli activate specialized cutaneous end organs in the bill, innervated by trigeminal afferents. We report that trigeminal ganglia (TG) of domestic and wild tactile-foraging ducks exhibit numerical expansion of large-diameter mechanoreceptive neurons expressing the mechano-gated ion channel Piezo2. These features are not found in visually foraging birds. Moreover, in the duck, the expansion of mechanoreceptors occurs at the expense of thermosensors. Direct mechanical stimulation of duck TG neurons evokes high-amplitude depolarizing current with a low threshold of activation, high signal amplification gain, and slow kinetics of inactivation. Together, these factors contribute to efficient conversion of light mechanical stimuli into neuronal excitation. Our results reveal an evolutionary strategy to hone tactile perception in vertebrates at the level of primary afferents.


Sujet(s)
Canards/physiologie , Comportement alimentaire , Mécanotransduction cellulaire , Neurones/physiologie , Toucher/physiologie , Animaux , Régulation négative , Ouverture et fermeture des portes des canaux ioniques , Canaux ioniques/métabolisme , Seuils sensoriels , Canaux cationiques TRPM/métabolisme , Canaux cationiques TRPV/métabolisme , Thermorécepteurs/métabolisme , Ganglion trigéminal/physiologie , Régulation positive
7.
Neurosci Res ; 86: 77-87, 2014 Sep.
Article de Anglais | MEDLINE | ID: mdl-24933499

RÉSUMÉ

The neocortex underlies not only remarkable motor and sensory capabilities, but also some of our most distinctly human cognitive functions. The emergence of these higher functions during evolution was accompanied by structural changes in the neocortex, including the acquisition of areal specializations such as Broca's speech and language area. The study of these evolutionary mechanisms, which likely involve species-dependent gene expression and function, represents a substantial challenge. These species differences, however, may represent valuable opportunities to understand the molecular underpinnings of neocortical evolution. Here, we discuss nitric oxide signaling as a candidate mechanism in the assembly of neocortical circuits underlying language and higher cognitive functions. This hypothesis was based on the highly specific mid-fetal pattern of nitric oxide synthase 1 (NOS1, previously nNOS) expression in the pyramidal (projection) neurons of two human neocortical areas respectively involved in speech and language, and higher cognition; the frontal operculum (FOp) and the anterior cingulate cortex (ACC). This expression is transiently present during mid-gestation, suggesting that NOS1 may be involved in the development of these areas and the assembly of their neural circuits. As no other gene product is known to exhibit such exquisite spatiotemporal expression, NOS1 represents a remarkable candidate for these functions.


Sujet(s)
Évolution biologique , Encéphale/physiologie , Cognition/physiologie , Langage , Monoxyde d'azote/métabolisme , Transduction du signal/physiologie , Encéphale/anatomie et histologie , Régulation de l'expression des gènes , Humains , Nitric oxide synthase type I/génétique , Nitric oxide synthase type I/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...