Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Adv Mater ; 35(39): e2304621, 2023 Sep.
Article de Anglais | MEDLINE | ID: mdl-37437599

RÉSUMÉ

Corrosion is the main factor limiting the lifetime of metallic materials, and a fundamental understanding of the governing mechanism and surface processes is difficult to achieve since the thin oxide films at the metal-liquid interface governing passivity are notoriously challenging to study. In this work, a combination of synchrotron-based techniques and electrochemical methods is used to investigate the passive film breakdown of a Ni-Cr-Mo alloy, which is used in many industrial applications. This alloy is found to be active toward oxygen evolution reaction (OER), and the OER onset coincides with the loss of passivity and severe metal dissolution. The OER mechanism involves the oxidation of Mo4+ sites in the oxide film to Mo6+ that can be dissolved, which results in passivity breakdown. This is fundamentally different from typical transpassive breakdown of Cr-containing alloys where Cr6+ is postulated to be dissolved at high anodic potentials, which is not observed here. At high current densities, OER also leads to acidification of the solution near the surface, further triggering metal dissolution. The OER plays an important role in the mechanism of passivity breakdown of Ni-Cr-Mo alloys due to their catalytic activity, and this effect needs to be considered when studying the corrosion of catalytically active alloys.

2.
ACS Appl Energy Mater ; 5(11): 13971-13980, 2022 Nov 28.
Article de Anglais | MEDLINE | ID: mdl-36465259

RÉSUMÉ

Zn1-x Sn x O y (ZTO) deposited by atomic layer deposition has shown promising results as a buffer layer material for kesterite Cu2ZnSnS4 (CZTS) thin film solar cells. Increased performance was observed when a ZTO buffer layer was used as compared to the traditional CdS buffer, and the performance was further increased after an air annealing treatment of the absorber. In this work, we study how CZTS absorber surface treatments may influence the chemical and electronic properties at the ZTO/CZTS interface and the reactions that may occur at the absorber surface prior to atomic layer deposition of the buffer layer. For this, we have used a combination of microscopy and synchrotron-based spectroscopies with variable information depths (X-ray photoelectron spectroscopy, high-energy X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy), allowing for an in-depth analysis of the CZTS near-surface regions and bulk material properties. No significant ZTO buffer thickness variation is observed for the differently treated CZTS absorbers, and no differences are observed when comparing the bulk properties of the samples. However, the formation of SnO x and compositional changes observed toward the CZTS surface upon an air annealing treatment may be linked to the modified buffer layer growth. Further, the results indicate that the initial N2 annealing step integrated in the buffer layer growth by atomic layer deposition, which removes Na-CO x species from the CZTS surface, may be useful for the ZTO/CZTS device performance.

3.
J Phys Chem C Nanomater Interfaces ; 126(7): 3411-3418, 2022 Feb 24.
Article de Anglais | MEDLINE | ID: mdl-35242268

RÉSUMÉ

We have used grazing incidence X-ray absorption fine structure spectroscopy at the cobalt K-edge to characterize monolayer CoO films on Pt(111) under ambient pressure exposure to CO and O2, with the aim of identifying the Co phases present and their transformations under oxidizing and reducing conditions. X-ray absorption near edge structure (XANES) spectra show clear changes in the chemical state of Co, with the 2+ state predominant under CO exposure and the 3+ state predominant under O2-rich conditions. Extended X-ray absorption fine structure spectroscopy (EXAFS) analysis shows that the CoO bilayer characterized in ultrahigh vacuum is not formed under the conditions used in this study. Instead, the spectra acquired at low temperatures suggest formation of cobalt hydroxide and oxyhydroxide. At higher temperatures, the spectra indicate dewetting of the film and suggest formation of bulklike Co3O4 under oxidizing conditions. The experiments demonstrate the power of hard X-ray spectroscopy to probe the structures of well-defined oxide monolayers on metal single crystals under realistic catalytic conditions.

4.
J Phys Chem Lett ; 12(39): 9508-9515, 2021 Oct 07.
Article de Anglais | MEDLINE | ID: mdl-34559547

RÉSUMÉ

Steps at metal surfaces may influence energetics and kinetics of catalytic reactions in unexpected ways. Here, we report a significant reduction of the CO saturation coverage in Pd vicinal surfaces, which in turn is relevant for the light-off of the CO oxidation reaction. The study is based on a systematic investigation of CO adsorption on vicinal Pd(111) surfaces making use of a curved Pd crystal. A combined X-ray Photoelectron Spectroscopy and DFT analysis allows us to demonstrate that an entire row of atomic sites under Pd steps remains free of CO upon saturation at 300 K, leading to a step-density-dependent reduction of CO coverage that correlates with the observed decrease of the light-off temperature during CO oxidation in vicinal Pd surfaces.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE