Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 13 de 13
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Int J Pharm ; 627: 122249, 2022 Nov 05.
Article de Anglais | MEDLINE | ID: mdl-36183915

RÉSUMÉ

Breast cancer is the number one cause of cancer-related deaths among females. Current chemotherapy targets both tumor and normal cells, leading to pronounced side effects. Therefore, therapeutic vaccines acting against specific cancer cells would be the choice of treatment. We prepared microparticles entrapping the antigens obtained from a murine metastatic breast cancer cell line, 4 T1 using the spray drying technology. These microparticles were incorporated into microneedle patches to deliver to the animals for the efficacy study. An antineoplastic drug, cyclophosphamide, in a very low dose has been found to inhibit the immunosuppressive regulatory T cells (Treg) (Le and Jaffee, 2012). In-vivo efficacy of the microparticulate vaccine given along with a low dose of cyclophosphamide was evaluated in a murine breast cancer model. Animals immunized with vaccine microparticles showed considerably slower tumor growth than animals that did not receive the vaccine. The results of the study showed that the Tumor-Associated Antigens (TAAs) within the microparticles were responsible for the delayed tumor growth in vaccinated animals. Vaccinated animals also showed an increase in the population of CD4 and CD8 T cells. Overall, our results demonstrated that immunotherapy with vaccine microparticles encapsulating TAA's could potentially be an effective treatment for metastatic breast cancer.


Sujet(s)
Vaccins anticancéreux , Tumeurs , Femelle , Souris , Animaux , Lignée cellulaire tumorale , Antigènes néoplasiques , Lymphocytes T CD8+ , Cyclophosphamide , Tumeurs/traitement médicamenteux
2.
Vaccines (Basel) ; 10(7)2022 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-35891147

RÉSUMÉ

The emergence of drug-resistant gonorrhea infections worldwide combined with the lack of a vaccine is alarming. We prepared a novel microparticulate (MP) vaccine formulation using whole-cell inactivated Neisseria gonorrhoeae as the vaccine antigen, with Alum and AddaVax™ as vaccine adjuvants. The adjuvanted vaccine MP formulation was assessed for in vitro immunostimulatory activity, autophagy, and antigen presentation ability. The data shows that the adjuvanted gonococci vaccine MP enhanced autophagy induction in antigen presenting cells (APCs) compared to gonococci vaccine MP without adjuvants, which is important for enhancing antigen presentation. In addition, the adjuvanted vaccine formulation increased the surface expression of antigen presenting molecules MHCI and MHCII as well as co-stimulatory molecules CD40 and CD86 on the surface of dendritic cells. In addition, the gonococci vaccine microparticles at lower doses did not significantly increase the expression of the death receptor CD95 in APCs, which when elevated leads to suboptimal antigen presentation and reduced immune responses. The adjuvanted whole-cell inactivated gonococci microparticle vaccine formulation enhanced antigen uptake, processing, and antigen presentation.

3.
Proc Natl Acad Sci U S A ; 119(18): e2120340119, 2022 05 03.
Article de Anglais | MEDLINE | ID: mdl-35482922

RÉSUMÉ

Advanced therapies are commonly administered via injection even when they act within the skin tissue, and this increases the chances of off-target effects. Here we report the use of a skin patch containing a hypobaric chamber that induces skin dome formation to enable needleless delivery of advanced therapies directly into porcine, rat, and mouse skin. Finite element method modeling showed that the hypobaric chamber in the patch opened the skin appendages by 32%, thinned the skin, and compressed the appendage wall epithelia. These changes allowed direct delivery of an H1N1 vaccine antigen and a diclofenac nanotherapeutic into the skin. Fluorescence imaging and infrared mapping of the skin showed needleless delivery via the appendages. The in vivo utility of the patch was demonstrated by a superior immunoglobulin G response to the vaccine antigen in mice compared to intramuscular injection and a 70% reduction in rat paw swelling in vivo over 5 h with diclofenac without skin histology changes.


Sujet(s)
Peau , Vaccins , Administration par voie cutanée , Animaux , Souris , Aiguilles , Rats , Peau/métabolisme , Absorption cutanée , Suidae
4.
Vaccines (Basel) ; 9(11)2021 Oct 27.
Article de Anglais | MEDLINE | ID: mdl-34835176

RÉSUMÉ

Sexually transmitted diseases (STDs) are a major global health issue. Approximately 250 million new cases of STDs occur each year globally. Currently, only three STDs (human papillomavirus (HPV), hepatitis A, and hepatitis B) are preventable by vaccines. Vaccines for other STDs, including gonorrhea, chlamydia, and syphilis, await successful development. Currently, all of these STDs are treated with antibiotics. However, the efficacy of antibiotics is facing growing challenge due to the emergence of bacterial resistance. Therefore, alternative therapeutic approaches, including the development of vaccines against these STDs, should be explored to tackle this important global public health issue. Mass vaccination could be more efficient in reducing the spread of these highly contagious diseases. Bacterial outer membrane vesicle (OMV) is a potential antigen used to prevent STDs. OMVs are released spontaneously during growth by many Gram-negative bacteria. They present a wide range of surface antigens in native conformation that possess interesting properties such as immunogenicity, adjuvant potential, and the ability to be taken up by immune cells, all of which make them an attractive target for application as vaccines against pathogenic bacteria. The major challenge associated with the use of OMVs is its fragile structure and stability. However, a particulate form of the vaccine could be a suitable delivery system that can protect the antigen from degradation by a harsh acidic or enzymatic environment. The particulate form of the vaccine can also act as an adjuvant by itself. This review will highlight some practical methods for formulating microparticulate OMV-based vaccines for STDs.

5.
Vaccines (Basel) ; 9(10)2021 Oct 14.
Article de Anglais | MEDLINE | ID: mdl-34696284

RÉSUMÉ

Currently, most vaccines available on the market are for parental use; however, this may not be the best option on several occasions. Mucosal routes of administration such as intranasal, sublingual, and buccal generate great interest due to the benefits they offer. These range from increasing patient compliance to inducing a more effective immune response than that achieved through conventional routes. Due to the activation of the common mucosal immune system, it is possible to generate an effective systemic and local immune response, which is not achieved through parenteral administration. Protection against pathogens that use mucosal entry routes is provided by an effective induction of mucosal immunity. Mucosal delivery systems are being developed, such as films and microneedles, which have proven to be effective, safe, and easy to administer. These systems have multiple advantages over commonly used injections, which are simple to manufacture, stable at room temperature, painless for the patient since they do not require puncture. Therefore, these delivery systems do not require to be administered by medical personnel; in fact, they could be self-administered.

6.
Int J Pharm ; 606: 120882, 2021 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-34298102

RÉSUMÉ

With the need for safe and efficacious vaccines which could be administered via non-invasive procedure, alternatives to traditional injectables vaccines are sought after. The present study aimed to develop the microparticulate formulation of measles vaccine and explore the feasibility of transdermal delivery via ablative laser mediated skin microporation. Transdermal route offers several advantages including painless immunization and ease of administration. We propose to use P.L.E.A.S.E. ablative laser for transdermal immunization of the microparticulate measles vaccine. This laser emits energy at 2940 µm, enabling cold ablation. This creates the micropores of defined size for delivery of vaccines into the skin. We compared the efficacy of transdermal immunization using the particulate formulation of the vaccine to that of traditional subcutaneous immunization using soluble and particulate vaccine. The microparticles were formulated using the biocompatible and biodegradable bovine serum albumin (BSA)-based polymer matrix. These vaccine microparticles were non-cytotoxic to the antigen presenting cells (APCs) and could effectively stimulate the innate immune response, confirmed by release of nitric oxide (NO) from the Griess's assay. The APCs when exposed to vaccine microparticles also showed a significantly higher expression of antigen-presenting molecules, MHC I and MHC II, and their co-stimulatory molecules, CD80 and CD40 as compared to the blank microparticles. The microparticulate measles vaccine was evaluated in vivo in the murine model. We compared the serum IgG and IgM levels in the mice receiving the vaccine subcutaneously and transdermally post-immunization. The results revealed that transdermal immunization with microparticulate vaccine is as efficient as the traditional subcutaneous administration.


Sujet(s)
Immunisation , Vaccin contre la rougeole , Administration par voie cutanée , Animaux , Lasers , Souris , Vaccination
7.
Vaccines (Basel) ; 8(4)2020 Oct 11.
Article de Anglais | MEDLINE | ID: mdl-33050614

RÉSUMÉ

Among the four types of influenza viruses, the influenza A strains and their subtypes have been responsible for causing worldwide pandemics and seasonal epidemics [...].

9.
Vaccines (Basel) ; 6(3)2018 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-30181504

RÉSUMÉ

Neisseria gonorrhoeae is a strict human pathogen responsible for more than 100 million new sexually transmitted infections worldwide each year. Due to the global emergence of antibiotic resistance, the Center for Disease control (CDC) recently listed N. gonorrhoeae as an urgent threat to public health. No vaccine is available in spite of the huge disease burden and the possibility of untreatable gonorrhea. The aim of this study is to investigate the immunogenicity of a novel whole-cell-based inactivated gonococcal microparticle vaccine formulation loaded in dissolvable microneedles for transdermal administration. The nanotechnology-based vaccine formulation consists of inactivated whole-cell gonococci strain CDC-F62, spray dried and encapsulated into biodegradable cross-linked albumin matrix with sustained slow antigen release. The dry vaccine nanoparticles were then loaded in a dissolvable microneedle skin patch for transdermal delivery. The efficacy of the whole-cell microparticles vaccine formulation loaded in microneedles was assessed in vitro using dendritic cells and macrophages as well as in vivo mouse model. Antibody titers were measured using an enzyme immunosorbent assay (ELISA) and antigen-specific T lymphocytes were assessed in spleens and lymph nodes. Here we report that whole-cell-based gonococcal microparticle vaccine loaded in dissolvable microneedles for transdermal administration induced significant increase in antigen-specific IgG antibody titers and antigen-specific CD4 and CD8 T lymphocytes in mice compared to gonococcal antigens in solution or empty microneedles. Significant increase in antigen-specific IgG antibody levels was observed at the end of week 2 in groups that received the vaccine compared to the group receiving empty nanoparticles. The advantages of using formalin-fixed whole-cell gonococci that all immunogenic epitopes are covered and preserved from degradation. The spherical shaped micro and nanoparticles are biological mimics of gonococci, therefore present to the immune system as invaders but without the ability to suppress adaptive immunity. In conclusion, the transdermal delivery of microparticles vaccine via a microneedle patch was shown to be an effective system for vaccine delivery. The novel gonorrhea nanovaccine is cheap to produce in a stable dry powder and can be delivered in microneedle skin patch obviating the need for needle use or the cold chain.

10.
AAPS PharmSciTech ; 18(2): 283-292, 2017 Feb.
Article de Anglais | MEDLINE | ID: mdl-27357420

RÉSUMÉ

The aim of this study is to develop an orally disintegrating film (ODF) containing a microparticulate measles vaccine formulation for buccal delivery. The measles vaccine microparticles were made with biocompatible and biodegradable bovine serum albumin (BSA) and processed by spray drying. These vaccine microparticles were incorporated in the ODF, consisting of Lycoat RS720®, Neosorb P60W® and Tween 80. The yield of the microparticles was approximately 85-95%, w/w. The mean size of the vaccine microparticles was 3.65 ± 1.89 µm and had a slightly negative surface charge of 32.65 ± 2.4 mV. The vaccine particles were nontoxic to normal cells at high concentrations (500 µg/2.5 × 105 cells) of vaccine particles. There was a significant induction of innate immune response by vaccine microparticles which was observed in vitro when compared to blank microparticles (P < 0.05). The vaccine microparticles also significantly increased the antigen presentation and co-stimulatory molecules expression on antigen presenting cells, which is a prerequisite for Th1 and Th2 immune responses. When the ODF vaccine formulation was dosed in juvenile pigs, significantly higher antibody titers were observed after week 2, with a significant increase at week 4 and plateauing through week 6 comparative to naïve predose titers. The results suggest that the ODF measles vaccine formulation is a viable dosage form alternative to noninvasive immunization that may increase patient compliance and commercial distribution.


Sujet(s)
Vaccin contre la rougeole/administration et posologie , Vaccin contre la rougeole/composition chimique , Muqueuse de la bouche/métabolisme , Administration par voie buccale , Administration par voie orale , Animaux , Matériaux biocompatibles/composition chimique , Lignée cellulaire , Chimie pharmaceutique/méthodes , Vecteurs de médicaments/composition chimique , Préparation de médicament/méthodes , Systèmes de délivrance de médicaments/méthodes , Immunisation/méthodes , Souris , Microsphères , Taille de particule , Sérumalbumine bovine/composition chimique , Suidae
11.
Vaccine ; 34(28): 3260-7, 2016 06 14.
Article de Anglais | MEDLINE | ID: mdl-27177946

RÉSUMÉ

Neisseria meningitidis is a leading cause of bacterial meningitis and sepsis and its capsular polysaccharides (CPS) are a major virulence factor in meningococcal infections and form the basis for serogroup designation and preventive vaccines. We have formulated a novel meningococcal nanoparticulate vaccine formulation that does not require chemical conjugation, but encapsulates meningococcal CPS polymers in a biodegradable material that slowly release antigens, thereby has antigen depot effect to enhance antigenicity. The novel vaccine formulation is inexpensive and can be stored as a dry powder with extended shelf life that does not require the cold-chain which facilitates storage and distribution. In order to enhance the antigenicity of meningococcal nanoparticulate vaccine, we screened various adjuvants formulated in nanoparticles, for their ability to potentiate antigen presentation by dendritic cells. Here, we report that MF59 and Alum are superior to TLR-based adjuvants in enhancing dendritic cell maturation and antigen presentation markers MHC I, MHC II, CD40, CD80 and CD86 in dendritic cells pulsed with meningococcal CPS nanoparticulate vaccine.


Sujet(s)
Adjuvants immunologiques/composition chimique , Présentation d'antigène , Cellules dendritiques/immunologie , Vaccins antiméningococciques/composition chimique , Nanoparticules/composition chimique , Alun/composition chimique , Animaux , Lignée cellulaire , Infections à méningocoques/prévention et contrôle , Souris , Souris de lignée C57BL , Neisseria meningitidis , Polysorbates/composition chimique , Squalène/composition chimique
12.
Int J Pharm ; 486(1-2): 153-8, 2015.
Article de Anglais | MEDLINE | ID: mdl-25796123

RÉSUMÉ

This study provided a convenient approach for large scale production of hydrogenated soya phosphatidylcholine nano-liposome powders using beclometasone dipropionate as a model drug and sucrose as proliposome carrier. Fluid-bed coating was employed to manufacture proliposomes by coating sucrose with the phospholipid (5%, 10%, 15% and 20% weight gains), followed by hydration, size reduction using high pressure homogenization, and freeze-drying to yield stable nano-vesicles. High pressure homogenization was compared with probe-sonication in terms of liposome size, zeta potential and drug entrapment. Furthermore, the effect of freeze-drying on vesicle properties generated using both size reduction methods was evaluated. Results have shown that high-pressure homogenization followed by freeze-drying and rehydration tended to yield liposomes smaller than the corresponding vesicles downsized via probe-sonication, and all size measurements were in the range of 72.64-152.50 nm, indicating that freeze-drying was appropriate, regardless of the size reduction technique. The liposomes, regardless of size reduction technique and freeze drying had slightly negative zeta potential values or were almost neutral in surface charge. The entrapment efficiency of BDP in homogenized liposomes was found to increase following freeze-drying, hence the drug entrapment efficiency values in rehydrated liposomes were 64.9%, 57%, 69.5% and 64.5% for 5%, 10%, 15% and 20% weight gains respectively. In this study, we have reported a reliable production method of nano-liposomes based on widely applicable industrial technologies such as fluid-bed coating, high pressure homogenization and freeze-drying. Moreover, sucrose played a dual role as a carrier in the proliposome formulations and as a cryoprotectant during freeze-drying.


Sujet(s)
Béclométasone/composition chimique , Phospholipides/composition chimique , Chimie pharmaceutique , Lyophilisation , Liposomes , Taille de particule , Poudres , Saccharose/composition chimique
13.
AAPS J ; 16(5): 986-93, 2014 Sep.
Article de Anglais | MEDLINE | ID: mdl-24981893

RÉSUMÉ

Neisseria meningitidis is a leading cause of bacterial meningitis and sepsis, and its capsular polysaccharides (CPS) are a major virulence factor in meningococcal infections and form the basis for serogroup designation and protective vaccines. We formulated a novel nanovaccine containing meningococcal CPS as an antigen encapsulated in albumin-based nanoparticles (NPs) that does not require chemical conjugation to a protein carrier. These nanoparticles are taken up by antigen-presenting cells and act as antigen depot by slowly releasing the antigen. In this study, we determined the ability of CPS-loaded vaccine nanoparticles to induce co-stimulatory molecules, namely CD80, CD86, and CD95 that impact effective antigen presentation. Co-stimulatory molecule gene induction and surface expression on macrophages and dendritic cells pulsed with meningococcal CPS-loaded nanoparticles were investigated using gene array and flow cytometry methods. Meningococcal CPS-loaded NP significantly induced the surface protein expression of CD80 and CD86, markers of dendritic cell maturation, in human THP-1 macrophages and in murine dendritic cells DC2.4 in a dose-dependent manner. The massive upregulation was also observed at the gene expression. However, high dose of CPS-loaded NP, but not empty NP, induced the expression of death receptor CD95 (Fas) leading to reduced TNF-α release and reduction in cell viability. The data suggest that high expression of CD95 may lead to death of antigen-presenting cells and consequently suboptimal immune responses to vaccine. The CPS-loaded NP induces the expression of co-stimulatory molecules and acts as antigen depot and can spare antigen dose, highly desirable criteria for vaccine formulations.


Sujet(s)
Antigène CD80/métabolisme , Antigène CD86/métabolisme , Cellules dendritiques/effets des médicaments et des substances chimiques , Vaccins antiméningococciques/pharmacologie , Nanoparticules , Neisseria meningitidis/immunologie , Polyosides bactériens/pharmacologie , Antigènes CD95/métabolisme , Animaux , Antigène CD80/génétique , Antigène CD86/génétique , Lignée cellulaire , Survie cellulaire/effets des médicaments et des substances chimiques , Chimie pharmaceutique , Cellules dendritiques/immunologie , Cellules dendritiques/métabolisme , Relation dose-effet des médicaments , Humains , Macrophages/effets des médicaments et des substances chimiques , Macrophages/immunologie , Macrophages/métabolisme , Vaccins antiméningococciques/composition chimique , Vaccins antiméningococciques/immunologie , Souris , Nanotechnologie , Monoxyde d'azote/métabolisme , Polyosides bactériens/composition chimique , Polyosides bactériens/immunologie , ARN messager/métabolisme , Sérumalbumine bovine/composition chimique , Technologie pharmaceutique/méthodes , Facteur de nécrose tumorale alpha/métabolisme , Régulation positive , Antigènes CD95/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...