Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 47
Filtrer
1.
IEEE Trans Biomed Eng ; 70(2): 671-680, 2023 02.
Article de Anglais | MEDLINE | ID: mdl-37021844

RÉSUMÉ

OBJECTIVE: We have developed a single-sided magnet system that allows Magnetic Resonance relaxation and diffusion parameters to be measured. METHODS: A single-sided magnet system has been developed, using an array of permanent magnets. The magnet positions are optimised to produce a B0 magnetic field with a spot that is relatively homogenous and can project into a sample. NMR relaxometry experiments are used to measure quantitative parameters such as T2, T1 and apparent diffusion coefficient (ADC) on samples on the benchtop. To explore preclinical application, we test whether it can detect changes during acute global cerebral hypoxia in an ovine model. RESULTS: The magnet produces a 0.2 T field projected into the sample. Measurements of benchtop samples show that it can measure T1, T2 and ADC, producing trends and values that are in line with literature measurements. In-vivo studies show a decrease in T2 during cerebral hypoxia that recovers following normoxia. CONCLUSION: The single-sided MR system has the potential to allow non-invasive measurements of the brain. We also demonstrate that it can operate in a pre-clinical environment, allowing T2 to be monitored during brain tissue hypoxia. SIGNIFICANCE: MRI is a powerful technique for non-invasive diagnosis in the brain, but its application has been limited by the requirements for magnetic field strength and homogeneity that imaging methods have. The technology described in this study provides a portable alternative to acquiring clinically significant MR parameters without the need for traditional imaging equipment.


Sujet(s)
Hypoxie cérébrale , Aimants , Animaux , Ovis , Humains , Imagerie par résonance magnétique/méthodes , Spectroscopie par résonance magnétique/méthodes , Imagerie par résonance magnétique de diffusion/méthodes
2.
J Magn Reson ; 342: 107264, 2022 09.
Article de Anglais | MEDLINE | ID: mdl-35849974

RÉSUMÉ

Caking is associated with the consolidation of dry powder and granules, leading to losses of function and/or quality. It has been object of studies in the pharmaceutical, food and fertiliser areas since 1920's because of its significant impact on product quality and value. Caking has been described as a three-step event consisting of sorption-dissolution-recrystallisation phases and constitutes a critical factor in fertilisers losses during storage while also hampering fertiliser application. Current methods for the evaluation of water sorption dynamics are expensive, time-consuming and/or inaccurate. This manuscript describes an unprecedented application of low-field 1H NMR relaxometry for the kinetic study of humidity uptake, in real-time, by urea mixed with different concentrations of an anti-caking agent (zeolite). The proposed method allows to follow the water uptake in different domains of the mixed fertiliser/zeolite samples. To our knowledge, this dynamic has not been observed and quantified so far in real-time. Furthermore, we presented the use of 2D-ILT for kinetic studies, being the first dimension the usual transverse relaxation and the second dimension the kinetic one. With this approach, the NMR relaxation times T2 correlated to time constants associated with the uptake kinetics of the water. This method could be extended to several kinetic studies and experiments with temperature variation. Depending on the kinetics of the studied process, the kernel of the Laplace transform must be suitably adapted.


Sujet(s)
Zéolites , Engrais , Humidité , Cinétique , Eau/composition chimique , Zéolites/composition chimique
3.
MAGMA ; 35(5): 805-815, 2022 Oct.
Article de Anglais | MEDLINE | ID: mdl-35107697

RÉSUMÉ

OBJECTIVE: Blood oxygenation can be measured using magnetic resonance using the paramagnetic effect of deoxy-haemoglobin, which decreases the [Formula: see text] relaxation time of blood. This [Formula: see text] contrast has been well characterised at the [Formula: see text] fields used in MRI (1.5 T and above). However, few studies have characterised this effect at lower magnetic fields. Here, the feasibility of blood oximetry at low field based on [Formula: see text] changes that are within a physiological relevant range is explored. This study could be used for specifying requirements for construction of a monitoring device based on low field permanent magnet systems. METHODS: A continuous flow circuit was used to control parameters such as oxygen saturation and temperature in a sample of blood. It flowed through a variable field magnet, where CPMG experiments were performed to measure its [Formula: see text]. In addition, the oxygen saturation was monitored by an optical sensor for comparison with the [Formula: see text] changes. RESULTS: These results show that at low [Formula: see text] fields, the change in blood [Formula: see text] due to oxygenation is small, but still detectable. The data measured at low fields are also in agreement with theoretical models for the oxy-deoxy [Formula: see text] effect. CONCLUSION: [Formula: see text] changes in blood due to oxygenation were observed at fields as low as 0.1 T. These results suggest that low field NMR relaxometry devices around 0.3 T could be designed to detect changes in blood oxygenation.


Sujet(s)
Oxymétrie , Saturation en oxygène , Imagerie par résonance magnétique , Oxygène
4.
Molecules ; 26(21)2021 Nov 05.
Article de Anglais | MEDLINE | ID: mdl-34771100

RÉSUMÉ

Electrolytes based on ionic liquids (IL) are promising candidates to replace traditional liquid electrolytes in electrochemical systems, particularly in combination with carbon-based porous electrodes. Insight into the dynamics of such systems is imperative for tailoring electrochemical performance. In this work, 1-Methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide and 1-Hexyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide were studied in a carbon black (CB) host using spectrally resolved Carr-Purcell-Meiboom-Gill (CPMG) and 13-interval Pulsed Field Gradient Stimulated Echo (PFGSTE) Magic Angle Spinning Nuclear Magnetic Resonance (MAS-NMR). Data were processed using a sensitivity weighted Laplace inversion algorithm without non-negativity constraint. Previously found relations between the alkyl length and the aggregation behavior of pyrrolidinium-based cations were confirmed and characterized in more detail. For the IL in CB, a different aggregation behavior was found compared to the neat IL, adding the surface of a porous electrode as an additional parameter for the optimization of IL-based electrolytes. Finally, the suitability of MAS was assessed and critically discussed for investigations of this class of samples.

5.
Sci Rep ; 11(1): 13712, 2021 07 01.
Article de Anglais | MEDLINE | ID: mdl-34211012

RÉSUMÉ

We present mathematical simulations of shapes of red blood cells (RBCs) and their cytoskeleton when they are subjected to linear strain. The cell surface is described by a previously reported quartic equation in three dimensional (3D) Cartesian space. Using recently available functions in Mathematica to triangularize the surfaces we computed four types of curvature of the membrane. We also mapped changes in mesh-triangle area and curvatures as the RBCs were distorted. The highly deformable red blood cell (erythrocyte; RBC) responds to mechanically imposed shape changes with enhanced glycolytic flux and cation transport. Such morphological changes are produced experimentally by suspending the cells in a gelatin gel, which is then elongated or compressed in a custom apparatus inside an NMR spectrometer. A key observation is the extent to which the maximum and minimum Principal Curvatures are localized symmetrically in patches at the poles or equators and distributed in rings around the main axis of the strained RBC. Changes on the nanometre to micro-meter scale of curvature, suggest activation of only a subset of the intrinsic mechanosensitive cation channels, Piezo1, during experiments carried out with controlled distortions, which persist for many hours. This finding is relevant to a proposal for non-uniform distribution of Piezo1 molecules around the RBC membrane. However, if the curvature that gates Piezo1 is at a very fine length scale, then membrane tension will determine local curvature; so, curvatures as computed here (in contrast to much finer surface irregularities) may not influence Piezo1 activity. Nevertheless, our analytical methods can be extended address these new mechanistic proposals. The geometrical reorganization of the simulated cytoskeleton informs ideas about the mechanism of concerted metabolic and cation-flux responses of the RBC to mechanically imposed shape changes.


Sujet(s)
Membrane érythrocytaire , Érythrocytes/cytologie , Algorithmes , Phénomènes biomécaniques , Forme de la cellule , Simulation numérique , Déformabilité érythrocytaire , Membrane érythrocytaire/métabolisme , Érythrocytes/métabolisme , Humains , Modèles biologiques , Contrainte mécanique , Propriétés de surface
6.
J Magn Reson ; 325: 106935, 2021 04.
Article de Anglais | MEDLINE | ID: mdl-33639595

RÉSUMÉ

The purpose of this study is to develop MRI methods to measure the solid fraction in granular flows quantitatively. It is increasingly recognised that solid fraction plays a key role in granular rheology, but experimental characterisation of it during flow is challenging. Here centric sectoral-SPRITE imaging is applied to image mustard seeds discharging from a 3D-printed hopper. Quantitative images are obtained after considering and correcting artefacts that may arise from flow and relaxation. The image intensity is then further corrected for spatial variations in the B1 field. Various maps of nominally homogeneous samples were tested to correct for variations in the B1 field. The B1 field was found to be sensitive to the geometry of the sample and the material in the sample. Hence, here static images of the seeds in the hopper were used to correct for B1 field variations. Moreover, small signal variations were observed from measurements performed on different days owing to subtle differences in the spectrometer operation. Here an internal standard was used to scale the signal intensity and correct for these variations. Following these corrections, a linear correlation (R2 = 0.999) was observed between the scaled image intensities and the known solid fractions of packed samples with solid fractions between 0.55 and 0.64. This correlation was used as a calibration of the 3D image of the hopper to extract quantitative time-averaged spatial maps of solid fraction during steady flow. The measurements were confirmed to be quantitative by also measuring the velocity of the particles. Together these measurements were used to calculate a mass flow rate in the hopper, which was consistent with the mass flow measured gravimetrically.

7.
Sci Rep ; 11(1): 3749, 2021 02 12.
Article de Anglais | MEDLINE | ID: mdl-33580124

RÉSUMÉ

We present the first direct nuclear magnetic resonance (NMR) evidence of enhanced entry of Ca2+ ions into human erythrocytes (red blood cells; RBCs), when these cells are mechanically distorted. For this we loaded the RBCs with the fluorinated Ca2+ chelator, 1,2-bis(2-amino-5-fluorophenoxy)ethane-N,N,N',N'-tetraacetic acid (5FBAPTA), and recorded 19F NMR spectra. The RBCs were suspended in gelatin gel in a special stretching/compression apparatus. The 5FBAPTA was loaded into the cells as the tetraacetoxymethyl ester; and 13C NMR spectroscopy with [1,6-13C]D-glucose as substrate showed active glycolysis albeit at a reduced rate in cell suspensions and gels. The enhancement of Ca2+ influx is concluded to be via the mechanosensitive cation channel Piezo1. The increased rate of influx brought about by the activator of Piezo1, 2-[5-[[(2,6-dichlorophenyl)methyl]thio]-1,3,4-thiadiazol-2-yl]-pyrazine (Yoda1) supported this conclusion; while the specificity of the cation-sensing by 5FBAPTA was confirmed by using the Ca2+ ionophore, A23187.


Sujet(s)
Calcium/métabolisme , Érythrocytes/métabolisme , Mécanotransduction cellulaire/physiologie , Transport biologique , Canaux calciques/métabolisme , Acide egtazique/analogues et dérivés , Acide egtazique/pharmacologie , Érythrocytes/anatomopathologie , Femelle , Fluor , Imagerie par résonance magnétique du fluor-19/méthodes , Glucose , Glycolyse , Humains , Canaux ioniques/métabolisme , Spectroscopie par résonance magnétique/méthodes , Mâle
8.
J Magn Reson ; 307: 106569, 2019 10.
Article de Anglais | MEDLINE | ID: mdl-31472436

RÉSUMÉ

Continuum dynamics of granular materials are known to be influenced by rotational, as well as translational, motion. Few experimental techniques exist that are sensitive to rotational motion. Here we demonstrate that MRI is sensitive to the rotation of granules and that we can quantify its effect on the MRI signal. In order to demonstrate the importance of rotational motion, we perform discrete element method (DEM) simulations of spherical particles inside a Couette shear cell. The variance of the velocity distribution was determined from DEM data using two approaches. (1) Direct averaging of the individual particle velocities. (2) Numerical simulation of the pulsed field gradient (PFG) MRI signal acquisition based on the DEM data. Rotational motion is found to be a significant effect, typically contributing up to 50% of the signal attenuation, thus amplifying the calculated velocity variance. A theoretical model was derived to relate an MRI signal to the angular velocity distribution. This model for the signal was compared to previously published experimental data as well as simulated MRI results and found to be consistent.

9.
J Comput Assist Tomogr ; 43(3): 434-442, 2019.
Article de Anglais | MEDLINE | ID: mdl-31082949

RÉSUMÉ

OBJECTIVES: Motivated by the similar appearance of malignant breast lesions in high b-value diffusion-weighted imaging (DWI) and positron emission tomography, the purpose of this work was to evaluate the applicability of a threshold isocontouring approach commonly used in positron emission tomography to analyze DWI data acquired from female human breasts with minimal interobserver variability. METHODS: Twenty-three female participants (59.4 ± 10.0 years) with 23 lesions initially classified as suggestive of cancers in x-ray mammography screening were subsequently imaged on a 1.5-T magnetic resonance imaging scanner. Diffusion-weighted imaging was performed prior to biopsy with b values of 0, 100, 750, and 1500 s/mm. Isocontouring with different threshold levels was performed on the highest b-value image to determine the voxels used for subsequent evaluation of diffusion metrics. The coefficient of variation was computed by specifying 4 different regions of interest drawn around the lesion. Additionally, a receiver operating statistical analysis was performed. RESULTS: Using a relative threshold level greater than or equal to 0.85 almost completely suppresses the intra-individual and inter-individual variability. Among 4 studied diffusion metrics, the diffusion coefficients from the intravoxel incoherent motion model returned the highest area under curve value of 0.9. The optimal cut-off diffusivity was found to be 0.85 µm/ms with a sensitivity of 87.5% and specificity of 90.9%. CONCLUSION: Threshold isocontouring on high b-value maps is a viable approach to reliably evaluate DWI data of suspicious focal lesions in magnetic resonance mammography.


Sujet(s)
Tumeurs du sein/imagerie diagnostique , Imagerie par résonance magnétique de diffusion/méthodes , Mammographie/méthodes , Sujet âgé , Femelle , Humains , Adulte d'âge moyen , Modèles théoriques , Biais de l'observateur , Tomographie par émission de positons , Amélioration d'image radiographique , Études rétrospectives , Sensibilité et spécificité
10.
Magn Reson Chem ; 57(9): 757-765, 2019 09.
Article de Anglais | MEDLINE | ID: mdl-30854731

RÉSUMÉ

For over 25 years, nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) techniques have been used to study materials under mechanical deformation. Collectively, these methods are referred to as Rheo-NMR. In many cases, it provides spatially and temporally resolved maps of NMR spectra, intrinsic NMR parameters (such as relaxation times), or motion (such as diffusion or flow). Therefore, Rheo-NMR is complementary to conventional rheological measurements. This review will briefly summarize current capabilities and limitations of Rheo-NMR in the context of material science and food science in particular. It will report on recent advances such as the incorporation of torque sensors or the implementation of large amplitude oscillatory shear and point out future opportunities for Rheo-NMR in food science.

11.
Magn Reson Imaging ; 56: 103-109, 2019 02.
Article de Anglais | MEDLINE | ID: mdl-30290994

RÉSUMÉ

Diffusion Ordered Spectroscopy (DOSY) is an attractive method for analyzing chemical mixtures in the liquid state because it separates spectra by the molecular weight of the associated molecule. It has been compared with hyphenated chromatographic and analytical methods such LC-MS and has broad potential in servicing those same applications including forensics, reaction analysis, quality control, and fraud detection. Benchtop NMR can collect quality spectra on small molecules, however, lacks the chemical shift dispersion of high field instruments, can suffer from spectral overlap common in mixtures, and the diminished sensitivity of the lower field compounds these problems. In this work, we show that existing high field pulse sequences and processing methods perform well at 43 MHz. Spectra from molecular mixtures where the constituents had 20% differences in diffusion coefficients and significant overlap were able to be matched to a bespoke spectral library and identified correctly. In addition, spectra from mixtures with constituents that have severe overlap in the spectrum and differ by 50% in diffusion coefficients were also able to be match and identified correctly. The combination of benchtop NMR and easy implementation of modern pulse sequences and processing show promise of bringing these useful methods to chemistry laboratories in research and industrial environments.


Sujet(s)
Spectroscopie par résonance magnétique/instrumentation , Spectroscopie par résonance magnétique/méthodes , Algorithmes , Butanols/composition chimique , Techniques de chimie analytique , Diffusion , Hexanols/composition chimique , Masse moléculaire , Méthode de Monte Carlo , Analyse multifactorielle , Octanols/composition chimique
12.
Langmuir ; 34(28): 8314-8325, 2018 07 17.
Article de Anglais | MEDLINE | ID: mdl-29924625

RÉSUMÉ

The formation of multilamellar vesicles (MLVs) in the lyotropic lamellar phase of the system triethylene glycol mono n-decyl ether (C10E3)/water is investigated under large amplitude oscillatory shear (LAOS) using spatially resolved rheo-NMR spectroscopy and a combination of rheo-small angle light scattering (rheo-SALS) and conventional rheology. Recent advances in rheo-NMR hardware development facilitated the application of LAOS deformations in high-field NMR magnets. For the range of investigated strain amplitudes (10-50) and frequencies (1 and 2 rad s-1), MLV formation is observed in all NMR and most SALS experiments. It is found that the MLV size depends on the applied frequency in contrast to previous steady shear experiments where the shear rate is the controlling parameter. The onset of MLV formation, however, is found to vary with the shear amplitude. The LAOS measurements bear no indication of the intermediate structures resembling aligned multilamellar cylinders observed in steady shear experiments. Lissajous curves of stress vs strain reveal a transition from a viscoelastic solid material to a pseudoplastic material.

13.
J Magn Reson ; 287: 82-90, 2018 02.
Article de Anglais | MEDLINE | ID: mdl-29306110

RÉSUMÉ

Measured nuclear magnetic resonance (NMR) transverse relaxation data in articular cartilage has been shown to be multi-exponential and correlated to the health of the tissue. The observed relaxation rates are dependent on experimental parameters such as solvent, data acquisition methods, data analysis methods, and alignment to the magnetic field. In this study, we show that diffusive exchange occurs in porcine articular cartilage and impacts the observed relaxation rates in T1-T2 correlation experiments. By using time domain analysis of T2-T2 exchange spectroscopy, the diffusive exchange time can be quantified by measurements that use a single mixing time. Measured characteristic times for exchange are commensurate with T1 in this material and so impacts the observed T1 behavior. The approach used here allows for reliable quantification of NMR relaxation behavior in cartilage in the presence of diffusive fluid exchange between two environments.


Sujet(s)
Cartilage articulaire/imagerie diagnostique , Traitement d'image par ordinateur/méthodes , Imagerie par résonance magnétique/méthodes , Algorithmes , Animaux , Diffusion , Imagerie par résonance magnétique de diffusion , Suidae
14.
Magn Reson Med ; 79(1): 501-510, 2018 Jan.
Article de Anglais | MEDLINE | ID: mdl-28394083

RÉSUMÉ

PURPOSE: Reduced bone strength is associated with a loss of bone mass, usually evaluated by dual-energy X-ray absorptiometry, although it is known that the bone microstructure also affects the bone strength. Here, a method is proposed to measure (in laboratory) the bone volume-to-total volume ratio by single-sided NMR scanners, which is related to the microstructure of the trabecular bone. METHODS: Three single-sided scanners were used on animal bone samples. These low-field, mobile, low-cost devices are able to detect the NMR signal, regardless of the sample sizes, without the use of ionizing radiations, with the further advantage of signal localization offered by their intrinsic magnetic field gradients. RESULTS: The performance of the different single-sided scanners have been discussed. The results have been compared with bone volume-to-total volume ratio by micro CT and MRI, obtaining consistent values. CONCLUSIONS: Our results demonstrate the feasibility of the method for laboratory analyses, which are useful for measurements like porosity on bone specimens. This can be considered as the first step to develop an NMR method based on the use of a mobile single-sided device, for the diagnosis of osteoporosis, through the acquisition of the signal from the appendicular skeleton, allowing for low-cost, wide screening campaigns. Magn Reson Med 79:501-510, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Sujet(s)
Absorptiométrie photonique , Os spongieux/imagerie diagnostique , Imagerie par résonance magnétique , Spectroscopie par résonance magnétique , Tomodensitométrie , Animaux , Densité osseuse , Maladies osseuses/imagerie diagnostique , Calibrage , Imagerie tridimensionnelle , Microcirculation , Porosité , Suidae , Microtomographie aux rayons X
15.
Magn Reson Chem ; 55(5): 498-507, 2017 May.
Article de Anglais | MEDLINE | ID: mdl-27487091

RÉSUMÉ

Complex materials are ubiquitous in science, engineering and nature. One important parameter for characterising their morphology is the degree of anisotropy. Magnetic resonance imaging offers non-invasive methods for quantitative measurements of the materials anisotropy, most commonly via diffusion tensor imaging and the subsequent extraction of the spatially resolved fractional anisotropy (FA) value. Here, we propose an alternative way of determining the FA as a sample average for cases where spatially resolved methods are not needed or not applicable. It is based on a particular diffusion-diffusion correlation spectroscopy protocol, allowing for the extraction of the mean (i.e. sample averaged) FA value. We demonstrate that mean FA values obtained from three anisotropic biological tissues are consistent with those extracted using diffusion tensor imaging. Moreover, we show that differences of mean FA values in healthy and tumour-bearing mouse brains allow to distinguish these tissue types. We anticipate that the proposed method will be beneficial in the wider context of medical and material science. Copyright © 2016 John Wiley & Sons, Ltd.


Sujet(s)
Spectroscopie par résonance magnétique/méthodes , Animaux , Anisotropie , Encéphale/imagerie diagnostique , Tumeurs du cerveau/imagerie diagnostique , Lignée cellulaire tumorale , Simulation numérique , Daucus carota , Diffusion , Imagerie par tenseur de diffusion , Humains , Souris
17.
Magn Reson Chem ; 54(12): 975-984, 2016 Dec.
Article de Anglais | MEDLINE | ID: mdl-27420565

RÉSUMÉ

Magnetic impurities are ubiquitous in natural porous media such as sand and soil. They generate internal magnetic field gradients because of increased magnetic susceptibility differences between solid and liquid phase in the pore space and because of the presence of magnetic centers. These internal gradients accelerate NMR relaxation rates and thus might limit the possibility of pore space characterization using NMR. In this study, we investigate the effects of coating the surface of natural sands by the antiferromagnetic iron oxyhydroxide goethite on NMR relaxation and diffusion properties. We found a non-quadratic dependence of the relaxation time distributions on the echo time indicating that the relaxation experiments were not performed in the fast diffusion limit, while the weak dependence on the external magnetic field strength is explained by the preponderance of the surface relaxation over the effect of diffusion in internal gradients. The surface to volume ratio of the pore space, determined by NMR diffusimetry ((S/V)NMR ) remains approximately constant, whereas the same quantity, determined from gas adsorption ((S/V)BET ) increases proportional to the coating density. This is because gas adsorption measures surface roughness on sub-nanometer scale, whereas NMR diffusimetry averages over structures smaller than few microns. This has consequences for the calculation of the surface relaxivities. The usage of the (S/V)NMR leads to constant values, whereas the usage of (S/V)BET leads to apparently decreasing relaxivities with increasing coating, which is unrealistic. Copyright © 2016 John Wiley & Sons, Ltd.


Sujet(s)
Spectroscopie par résonance magnétique/méthodes , Quartz/composition chimique , Silice/composition chimique , Algorithmes , Diffusion , Champs électromagnétiques , Gaz , Sédiments géologiques , Composés du fer , Minéraux , Porosité
18.
J Magn Reson ; 269: 186-195, 2016 08.
Article de Anglais | MEDLINE | ID: mdl-27344611

RÉSUMÉ

We present the pseudo 2-D relaxation model (P2DRM), a method to estimate multidimensional probability distributions of material parameters from independent 1-D measurements. We illustrate its use on 1-D T1 and T2 relaxation measurements of saturated rock and evaluate it on both simulated and experimental T1-T2 correlation measurement data sets. Results were in excellent agreement with the actual, known 2-D distribution in the case of the simulated data set. In both the simulated and experimental case, the functional relationships between T1 and T2 were in good agreement with the T1-T2 correlation maps from the 2-D inverse Laplace transform of the full 2-D data sets. When a 1-D CPMG experiment is combined with a rapid T1 measurement, the P2DRM provides a double-shot method for obtaining a T1-T2 relationship, with significantly decreased experimental time in comparison to the full T1-T2 correlation measurement.

19.
Magn Reson Imaging ; 34(2): 227-38, 2016 Feb.
Article de Anglais | MEDLINE | ID: mdl-26514390

RÉSUMÉ

Recent compressed sensing techniques allow signal acquisition with less sampling than required by the Nyquist-Shannon theorem which reduces the data acquisition time in magnetic resonance imaging (MRI). However, prior knowledge becomes essential to reconstruct detailed features when the sampling rate is exceedingly low. In this work, one compressed sensing scheme developed in wireless sensing networks was adapted for the purpose of reconstructing magnetic resonance images by using one-dimensional principal component analysis (1D-PCA). Moreover, another related reconstruction method was proposed based on two-dimensional principal component analysis (2D-PCA). When comparing with one wavelet compressed sensing method, we demonstrate that these techniques are feasible and efficient at high undersampling rates.


Sujet(s)
Algorithmes , Artéfacts , Amélioration d'image/méthodes , Interprétation d'images assistée par ordinateur/méthodes , Imagerie par résonance magnétique/méthodes , Analyse en composantes principales , Simulation numérique , Compression de données/méthodes , Imagerie par résonance magnétique/instrumentation , Modèles statistiques , Fantômes en imagerie , Reproductibilité des résultats , Taille de l'échantillon , Sensibilité et spécificité , Traitement du signal assisté par ordinateur
20.
J Magn Reson ; 259: 135-45, 2015 Oct.
Article de Anglais | MEDLINE | ID: mdl-26340434

RÉSUMÉ

Method and considerations are presented that allow for an improved quantitative velocity measurement of complex fluids under shear using a fast 2D PGSE-RARE technique. While this contribution is relevant for shear geometries with rotational symmetry in general, the focus here is set on cylindrical Couette cells, a device most commonly used for rheological NMR investigations. The curved nature of the flow within the shearing geometry creates challenges in accurately determining the flow profile, as conventional imaging gradients naturally operate on a Cartesian grid. In particular the appropriate slice thickness in the flow direction and the applied k-space trajectory are discussed. For the latter an MRI simulation program has been written that numerically solves the Bloch equations and allows for the investigation of out-of-pixel flow. Furthermore, we present ways of increasing the spatial resolution across the gap of cylindrical Couette cells while still providing 2D imaging capabilities under certain conditions, thus allowing for a more detailed quantification of flow profiles as necessary for the analysis of complex fluid flow.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...