Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1753-1761, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-39233403

RÉSUMÉ

Warming drives material cycling in terrestrial ecosystems by affecting litter decomposition, as it can alter litter yield, quality and decomposer composition and activity. The effect of warming on the decomposition of mixed litter in arid and semi-arid zones remains unknown. We investigated the mass loss and nutrient release dynamics during 450 days of decomposition of Artemisia ordosica, Leymus secalinus, and their mixture in Mu Us Desert by open-top chambers and litter bags. The results showed interspecific differences in the responses to warming, in that warming promoted mass loss and N and P release from L. secalinus and inhibited mass loss and P but promoting N release from A. ordosica. Mixing of A. ordosica and L. secalinus litter inhibited decomposition. Warming enhanced the antagonistic effects of mixed decomposition. The total mass loss of mixed litter was decreased by 9%, and the release of N and P was decreased by 4.9% and 12.6%, respectively. The antagonistic effects of mixed litter mass loss and P release under the warming treatment gradually strengthened with time, with N release changing from a synergistic to an antagonistic effect at 150 d. The non-additive effects produced by the mixed decomposition of A. ordosica and L. secalinus litter were jointly regulated by temperature and time. Future research on mixed litter decomposition should consider the interaction between temperature and time.


Sujet(s)
Artemisia , Climat désertique , Artemisia/croissance et développement , Artemisia/composition chimique , Chine , Poaceae/croissance et développement , Feuilles de plante/composition chimique , Feuilles de plante/métabolisme , Azote/analyse , Azote/composition chimique , Écosystème , Phosphore/composition chimique , Phosphore/analyse , Facteurs temps , Température élevée , Réchauffement de la planète
2.
Ying Yong Sheng Tai Xue Bao ; 32(7): 2407-2414, 2021 Jul.
Article de Anglais | MEDLINE | ID: mdl-34313058

RÉSUMÉ

Evapotranspiration (ET) is an important part of water cycle and energy flow in ecosystem. Accurate estimation of ET and its components is critical for understanding the impacts of ecophysiological processes on ecosystem water balance and plant water use strategy. Using the eddy-covariance technique and the micro-lysimeter, we measured ET, evaporation (E), transpiration (T) of the Artemisia ordosica-Hedysarum fruticosum var. mongolicum shrubland in the Mu Us Desert during May 20 to September 15, 2019, quantified the ET components, and analyzed the seasonal characteristics and influencing factors of ET and its components. The results showed that T was the main component of ET in the growing season, with a T/ET of 53.1%. T/ET increased and E/ET decreased as precipitation decreased. The partitioning of evapotranspiration was regulated by precipi-tation. At the seasonal scale, the value of E was positively correlated with soil water content at 10 cm depth (SWC10) and net radiation (Rn), while SWC10 was the main factor influencing E. The value of T increased with the increases of Rn and leaf area index (LAI), and increased first and then decreased with the increases of soil water content at 30 cm layer (SWC30). T was affected by SWC30, Rn and LAI. Moisture was the main influencing factor of ET. The ET/P in the growing season was 109.2% and was 250.5% in May, indicating that the water consumption of ET in early growing season was partly from the precipitation in non-growing season.


Sujet(s)
Artemisia , Écosystème , Chine , Transpiration des plantes , Saisons , Sol , Eau
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE