Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 62
Filtrer
1.
Theor Appl Genet ; 137(7): 158, 2024 Jun 12.
Article de Anglais | MEDLINE | ID: mdl-38864891

RÉSUMÉ

Examining the connection between P and starch-related signals can help elucidate the balance between nutrients and yield. This study utilized 307 diverse maize inbred lines to conduct multi-year and multi-plot trials, aiming to explore the relationship among P content, starch content, and 100-kernel weight (HKW) of mature grains. A significant negative correlation was found between P content and both starch content and HKW, while starch content showed a positive correlation with HKW. The starch granules in grains with high-P and low-starch content (HPLS) were significantly smaller compared to grains with low-P high-starch content (LPHS). Additionally, mian04185-4 (HPLS) exhibited irregular and loosely packed starch granules. A significant decrease in ZmPHOs genes expression was detected in the HPLS line ZNC442 as compared to the LPHS line SCML0849, while no expression difference was observed in AGPase encoding genes between these two lines. The down-regulated genes in ZNC442 grains were enriched in nucleotide sugar and fatty acid anabolic pathways, while up-regulated genes were enriched in the ABC transporters pathway. An accelerated breakdown of fat as the P content increased was also observed. This implied that HPLS was resulted from elevated lipid decomposition and inadequate carbon sources. The GWAS analysis identified 514 significantly associated genes, out of which 248 were differentially expressed. Zm00001d052392 was found to be significantly associated with P content/HKW, exhibiting high expression in SCML0849 but almost no expression in ZNC442. Overall, these findings suggested new approaches for achieving a P-yield balance through the manipulation of lipid metabolic pathways in grains.


Sujet(s)
Phosphore , Amidon , Transcriptome , Zea mays , Zea mays/génétique , Zea mays/métabolisme , Amidon/métabolisme , Phosphore/métabolisme , Grains comestibles/génétique , Grains comestibles/métabolisme , Régulation de l'expression des gènes végétaux , Étude d'association pangénomique , Locus de caractère quantitatif , Phénotype
2.
Plant J ; 117(1): 33-52, 2024 Jan.
Article de Anglais | MEDLINE | ID: mdl-37731059

RÉSUMÉ

Chromatin in eukaryotes folds into a complex three-dimensional (3D) structure that is essential for controlling gene expression and cellular function and is dynamically regulated in biological processes. Studies on plant phosphorus signaling have concentrated on single genes and gene interactions. It is critical to expand the existing signaling pathway in terms of its 3D structure. In this study, low-Pi treatment led to greater chromatin volume. Furthermore, low-Pi stress increased the insulation score and the number of TAD-like domains, but the effects on the A/B compartment were not obvious. The methylation levels of target sites (hereafter as RdDM levels) peaked at specific TAD-like boundaries, whereas RdDM peak levels at conserved TAD-like boundaries shifted and decreased sharply. The distribution pattern of RdDM sites originating from the Helitron transposons matched that of genome-wide RdDM sites near TAD-like boundaries. RdDM pathway genes were upregulated in the middle or early stages and downregulated in the later stages under low-Pi conditions. The RdDM pathway mutant ddm1a showed increased tolerance to low-Pi stress, with shortened and thickened roots contributing to higher Pi uptake from the shallow soil layer. ChIP-seq results revealed that ZmDDM1A could bind to Pi- and root development-related genes. Strong associations were found between interacting genes in significantly different chromatin-interaction regions and root traits. These findings not only expand the mechanisms by which plants respond to low-Pi stress through the RdDM pathway but also offer a crucial framework for the analysis of biological issues using 3D genomics.


Sujet(s)
Chromatine , Zea mays , Chromatine/génétique , Zea mays/génétique , Méthylation de l'ADN , Assemblage et désassemblage de la chromatine/génétique , Extinction de l'expression des gènes , Régulation de l'expression des gènes végétaux
3.
Front Plant Sci ; 14: 1286699, 2023.
Article de Anglais | MEDLINE | ID: mdl-38023907

RÉSUMÉ

A previous metabolomic and genome-wide association analysis of maize screened a glucose-6-phosphate 1-epimerase (ZmG6PE) gene, which responds to low-phosphorus (LP) stress and regulates yield in maize's recombinant inbred lines (RILs). However, the relationship of ZmG6PE with phosphorus and yield remained elusive. This study aimed to elucidate the underlying response mechanism of the ZmG6PE gene to LP stress and its consequential impact on maize yield. The analysis indicated that ZmG6PE required the Aldose_epim conserved domain to maintain enzyme activity and localized in the nucleus and cell membrane. The zmg6pe mutants showed decreased biomass and sugar contents but had increased starch content in leaves under LP stress conditions. Combined transcriptome and metabolome analysis showed that LP stress activated plant immune regulation in response to the LP stress through carbon metabolism, amino acid metabolism, and fatty acid metabolism. Notably, LP stress significantly reduced the synthesis of glucose-1-phosphate, mannose-6-phosphate, and ß-alanine-related metabolites and changed the expression of related genes. ZmG6PE regulates LP stress by mediating the expression of ZmSPX6 and ZmPHT1.13. Overall, this study revealed that ZmG6PE affected the number of grains per ear, ear thickness, and ear weight under LP stress, indicating that ZmG6PE participates in the phosphate signaling pathway and affects maize yield-related traits through balancing carbohydrates homeostasis.

4.
Sensors (Basel) ; 23(15)2023 Jul 29.
Article de Anglais | MEDLINE | ID: mdl-37571580

RÉSUMÉ

This study focuses on developing a comprehensive model of a rigid overhead system, which includes essential components such as the suspension structure, positioning clamp, and expansion joint. The modelling approach utilizes finite element theory and beam elements to accurately represent the displacement, stiffness, and mass characteristics of the system. The models also incorporate the suspension structure and positioning line clamp, which play crucial roles in suspending and positioning the busbar. Various suspension structures and positioning line clamps are evaluated based on their dynamic characteristics. The expansion joint, responsible for connecting different anchor sections of the rigid overhead system, undergoes a detailed analysis. Different assembly scenarios, including ideal and deflected assembly conditions, are considered. To simulate the dynamic behaviour of the expansion joint, additional beams are introduced into the system model. The primary finding of the analysis is that the maximum stresses observed in the constructed expansion joint model, under different temperature conditions and normal/deflected assembly conditions, remain within the permissible stress limits of the material. This indicates a high level of safety. However, certain areas exhibit stress concentration, particularly at the sliding block B and sliding rod A positions. This stress concentration is primarily attributed to the unique assembly form of the expansion joint. To improve stress distribution and enhance service reliability, the analysis suggests optimizing the installation deflection angle and geometric design of the expansion joint. Furthermore, the concentrated mass at the expansion joint significantly impacts the current collection quality of the pantograph-overhead system. Mitigating this negative impact can be achieved by reducing the mass of the expansion joint.

5.
Plant Physiol Biochem ; 201: 107874, 2023 Aug.
Article de Anglais | MEDLINE | ID: mdl-37429215

RÉSUMÉ

Seed germination directly affect maize yield and grain quality. Low-temperature reduces maize yield by affecting seed germination and seedling growth. However, the molecular mechanism of maize seed germination under low-temperature remains unclear. In this study, the transcriptome data of two maize inbred lines SCL127 (chilling-sensitive) and SCL326 (chilling-tolerant) were analyzed at five time points (0 H, 4 H, 12 H, 24 H, and 48 H) under low-temperature conditions. Through the comparison of SCL127-0 H-vs-SCL326-0 H (Group I), SCL127-4 H-vs-SCL326-4 H (Group Ⅱ), SCL127-12 H-vs-SCL326-12 H (Group Ⅲ), SCL127-24 H-vs-SCL326-24 H (Group Ⅳ), and SCL127-48 H-vs SCL326-48 H (Group Ⅴ), a total of 8,526 differentially expressed genes (DEGs) were obtained. Weighted correlation network analysis revealed that Zm00001d010445 was the hub gene involved in seed germination under low-temperature conditions. Zm00001d010445-based association analysis showed that Hap Ⅱ (G) was the excellent haplotype for seed germination under low-temperature conditions. These findings provide a new perspective for the study of the genetic architecture of maize tolerance to low-temperature and contribute to the cultivation of maize varieties with low-temperature tolerance.


Sujet(s)
Germination , Zea mays , Germination/génétique , Zea mays/génétique , Température , Graines/génétique , Plant
6.
Theor Appl Genet ; 136(4): 93, 2023 Apr 03.
Article de Anglais | MEDLINE | ID: mdl-37010631

RÉSUMÉ

KEY MESSAGE: Combined GWAS, WGCNA, and gene-based association studies identified the co-expression network and hub genes for maize EC induction. ZmARF23 bound to ZmSAUR15 promoter and regulated its expression, affecting EC induction. Embryonic callus (EC) induction in immature maize embryos shows high genotype dependence, which limits the application of genetic transformation in transgenic breeding and gene function elucidation in maize. Herein, we conducted a genome-wide association mapping (GWAS) for four EC induction-related traits, namely rate of embryonic callus induction (REC), increased callus diameter (ICD), ratio of shoot formation (RSF), and length of shoot (LS) across different environments. A total of 77 SNPs were significantly associated these traits under three environments and using the averages (across environments). Among these significant SNPs, five were simultaneously detected under multiple environments and 11 had respective phenotypic variation explained > 10%. A total of 257 genes were located in the linkage disequilibrium decay of these REC- and ICD-associated SNPs, of which 178 were responsive to EC induction. According to the expression values of the 178 genes, we performed a weighted gene co-expression network analysis (WGCNA) and revealed an EC induction-associated module and five hub genes. Hub gene-based association studies uncovered that the intragenic variations in GRMZM2G105473 and ZmARF23 influenced EC induction efficiency among different maize lines. Dual-luciferase reporter assay indicated that ZmARF23 bound to the promoter of a known causal gene (ZmSAUR15) for EC induction and positively regulated its expression on the transcription level. Our study will deepen the understanding of genetic and molecular mechanisms underlying EC induction and contribute to the use of genetic transformation in maize.


Sujet(s)
Étude d'association pangénomique , Zea mays , Zea mays/génétique , Zea mays/métabolisme , Amélioration des plantes , Cartographie chromosomique , Phénotype , Polymorphisme de nucléotide simple
7.
Phytopathology ; 113(7): 1317-1324, 2023 Jul.
Article de Anglais | MEDLINE | ID: mdl-36721376

RÉSUMÉ

Gibberella ear rot (GER) in maize caused by Fusarium graminearum is one of the most devastating maize diseases reducing grain yield and quality worldwide. The genetic bases of maize GER resistance remain largely unknown. Using artificial inoculation across multiple environments, the GER severity of an association panel consisting of 316 diverse inbred lines was observed with wide phenotypic variation. In the association panel, a genome-wide association study using a general linear model identified 69 single-nucleotide polymorphisms (SNPs) significantly associated with GER resistance at the threshold of 2.04 × 10-5, and the average phenotypic variation explained (PVE) of these SNPs was 5.09%. We also conducted a genome-wide association study analysis using a mixed linear model at a threshold of 1.0 × 10-4, and 16 significantly associated SNPs with an average PVE of 4.73% were detected. A combined general linear model and mixed linear model method obtained 10 co-localized significantly associated SNPs linked to GER resistance, including the most significant SNP (PZE-105079915) with the greatest PVE value, 9.07%, at bin 5.05 following 10 candidate genes. These findings are significant for the exploration of the complicated genetic variations in maize GER resistance. The regions and genes identified herein provide a list of candidate targets for further investigation, in addition to the elite germplasm resources that can be used for breeding GER resistance in maize.


Sujet(s)
Fusarium , Gibberella , Gibberella/génétique , Étude d'association pangénomique , Maladies des plantes/génétique , Amélioration des plantes , Fusarium/génétique , Locus génétiques , Polymorphisme de nucléotide simple/génétique , Zea mays/génétique , Résistance à la maladie/génétique
8.
Theor Appl Genet ; 136(1): 12, 2023 Jan.
Article de Anglais | MEDLINE | ID: mdl-36662253

RÉSUMÉ

KEY MESSAGE: Combined linkage and association analysis revealed five co-localized genetic loci across multiple environments. The key gene Zm00001d026491 was further verified to influence leaf length by candidate gene association analysis. Leaf morphology and number determine the canopy structure and thus affect crop yield. Herein, the genetic basis and key genes for 25 leaf-related traits, including leaf lengths (LL), leaf widths (LW), and leaf areas (LA) of eight continuous leaves under the tassel, and the number of leaves above the primary ear (LAE), were dissected by using an association panel and a biparental population. Using an intermated B73 × Mo17 (IBM) Syn10 doubled haploid (DH) population, 290 quantitative trait loci (QTL) controlling these traits were detected across different locations, among which 115 QTL were individually repeatedly identified in at least two environments. Using the association panel, 165 unique significant single-nucleotide polymorphisms (SNPs) were associated with target traits (P < 2.15E-06), of which 35 were separately detected across multiple environments. In total, 42 pleiotropic QTL/SNPs (pQTL/SNPs) were responsible for at least two of the LL, LW, LA, and LAE traits across multiple environments. Combining the QTL mapping and association study, five unique SNPs were located within the confidence intervals of seven QTL, and 77 genes were identified based on the linkage disequilibrium regions of co-localized SNP loci. Gene-based association studies verified that the intragenic variants in the candidate gene Zm00001d026491 influenced LL of the third leaf counted from the top node. These findings will provide vital information to understanding the genetic basis of leaf-related traits and help to cultivate maize varieties with ideal plant architecture.


Sujet(s)
Locus de caractère quantitatif , Zea mays , Zea mays/génétique , Liaison génétique , Cartographie chromosomique , Phénotype , Polymorphisme de nucléotide simple , Feuilles de plante/génétique
9.
Plant Physiol Biochem ; 195: 300-309, 2023 Feb.
Article de Anglais | MEDLINE | ID: mdl-36657295

RÉSUMÉ

Lead (Pb) in the soil affects the growth and development of plants and causes damages to the human body through the food chain. Here, we identified and cloned a Pb-tolerance gene ZmPIP2;5 based on a weighted gene co-expression network analysis and gene-based association studies. We showed that ZmPIP2;5 encodes a plasma membrane aquaporin and positively regulated Pb tolerance and accumulation in Arabidopsis and yeast. Overexpression of ZmPIP2;5 increased root length and fresh weight of Arabidopsis seedlings under Pb stress. Heterologous expression of ZmPIP2;5 in yeast caused the enhanced growth speed under Pb treatment and Pb accumulation in yeast cells. A (T/A) SNP in the ZmPIP2;5 promoter affected the expression abundance of ZmPIP2;5 and thereby led to the difference in Pb tolerance among different maize lines. Our study helps to understand the mechanism underlying plant tolerance to Pb stress and provides new ideas for breeding Pb-tolerance maize varieties via molecular marker-assisted selection.


Sujet(s)
Arabidopsis , Zea mays , Humains , Zea mays/métabolisme , Plomb/toxicité , Plomb/métabolisme , Arabidopsis/génétique , Arabidopsis/métabolisme , Saccharomyces cerevisiae/métabolisme , Amélioration des plantes , Régulation de l'expression des gènes végétaux/génétique , Racines de plante/génétique , Racines de plante/métabolisme
10.
Int J Mol Sci ; 23(23)2022 Dec 01.
Article de Anglais | MEDLINE | ID: mdl-36499409

RÉSUMÉ

Ear shank length (ESL) has significant effects on grain yield and kernel dehydration rate in maize. Herein, linkage mapping and genome-wide association study were combined to reveal the genetic architecture of maize ESL. Sixteen quantitative trait loci (QTL) were identified in the segregation population, among which five were repeatedly detected across multiple environments. Meanwhile, 23 single nucleotide polymorphisms were associated with the ESL in the association panel, of which four were located in the QTL identified by linkage mapping and were designated as the population-common loci. A total of 42 genes residing in the linkage disequilibrium regions of these common variants and 12 of them were responsive to ear shank elongation. Of the 12 genes, five encode leucine-rich repeat receptor-like protein kinases, proline-rich proteins, and cyclin11, respectively, which were previously shown to regulate cell division, expansion, and elongation. Gene-based association analyses revealed that the variant located in Cyclin11 promoter affected the ESL among different lines. Cyclin11 showed the highest expression in the ear shank 15 days after silking among diverse tissues of maize, suggesting its role in modulating ESL. Our study contributes to the understanding of the genetic mechanism underlying maize ESL and genetic modification of maize dehydration rate and kernel yield.


Sujet(s)
Étude d'association pangénomique , Zea mays , Zea mays/génétique , Phénotype , Cartographie chromosomique , Locus de caractère quantitatif , Polymorphisme de nucléotide simple , Liaison génétique
11.
Sensors (Basel) ; 22(24)2022 Dec 16.
Article de Anglais | MEDLINE | ID: mdl-36560289

RÉSUMÉ

A variety of Chinese textual operational text data has been recorded during the operation and maintenance of the high-speed railway catenary system. Such defect text records can facilitate defect detection and defect severity analysis if mined efficiently and accurately. Therefore, in this context, this paper focuses on a specific problem in defect text mining, which is to efficiently extract defect-relevant information from catenary defect text records and automatically identify catenary defect severity. The specific task is transformed into a machine learning problem for defect text classification. First, we summarize the characteristics of catenary defect texts and construct a text dataset. Second, we use BERT to learn defect texts and generate word embedding vectors with contextual features, fed into the classification model. Third, we developed a deep text categorization network (DTCN) to distinguish the catenary defect level, considering the contextualized semantic features. Finally, the effectiveness of our proposed method (BERT-DTCN) is validated using a catenary defect textual dataset collected from 2016 to 2018 in the China Railway Administration in Chengdu, Lanzhou, and Hengshui. Moreover, BERT-DTCN outperforms several competitive methods in terms of accuracy, precision, recall, and F1-score value.


Sujet(s)
Sémantique , Humains , Chine , Fouille de données , Apprentissage machine
12.
Front Plant Sci ; 13: 1013598, 2022.
Article de Anglais | MEDLINE | ID: mdl-36388550

RÉSUMÉ

Nutrient restrictions and large-scale emergence of diseases are threatening the maize production. Recent findings demonstrated that there is a certain synergistic interaction between nutrition and diseases pathways in model plants, however there are few studies on the synergistic genes of nutrients and diseases in maize. Thus, the transcriptome data of nitrogen (N) and phosphorus (P) nutrients and diseases treatments in maize, rice, wheat and Arabidopsis thaliana were collected in this study, and four and 22 weighted co-expression modules were obtained by using Weighted Gene Co-expression Network Analysis (WGCNA) in leaf and root tissues, respectively. With a total of 5252 genes, MFUZZ cluster analysis screened 26 clusters with the same expression trend under nutrition and disease treatments. In the meantime, 1427 genes and 22 specific consensus quantitative trait loci (scQTLs) loci were identified by meta-QTL analysis of nitrogen and phosphorus nutrition and disease stress in maize. Combined with the results of cluster analysis and scQTLs, a total of 195 consistent genes were screened, of which six genes were shown to synergistically respond to nutrition and disease both in roots and leaves. Moreover, the six candidate genes were found in scQTLs associated with gray leaf spot (GLS) and corn leaf blight (CLB). In addition, subcellular localization and bioinformatics analysis of the six candidate genes revealed that they were primarily expressed in endoplasmic reticulum, mitochondria, nucleus and plasma membrane, and were involved in defense and stress, MeJA and abscisic acid response pathways. The fluorescence quantitative PCR confirmed their responsiveness to nitrogen and phosphorus nutrition as well as GLS treatments. Taken together, findings of this study indicated that the nutrition and disease have a significant synergistic response in maize.

13.
Front Plant Sci ; 13: 1015151, 2022.
Article de Anglais | MEDLINE | ID: mdl-36226300

RÉSUMÉ

Lead (Pb) is a highly toxic contaminant to living organisms and the environment. Excessive Pb in soils affects crop yield and quality, thus threatening human health via the food chain. Herein, we investigated Pb tolerance among a maize association panel using root bushiness (BSH) under Pb treatment as an indicator. Through a genome-wide association study of relative BSH, we identified four single nucleotide polymorphisms (SNPs) and 30 candidate genes associated with Pb tolerance in maize seedlings. Transcriptome analysis showed that four of the 30 genes were differentially responsive to Pb treatment between two maize lines with contrasting Pb tolerance. Among these, the ZmbZIP107 transcription factor was confirmed as the key gene controlling maize tolerance to Pb by using gene-based association studies. Two 5' UTR_variants in ZmbZIP107 affected its expression level and Pb tolerance among different maize lines. ZmbZIP107 protein was specifically targeted to the nucleus and ZmbZIP107 mRNA showed the highest expression in maize seedling roots among different tissues. Heterologous expression of ZmbZIP107 enhanced rice tolerance to Pb stress and decreased Pb absorption in the roots. Our study provided the basis for revelation of the molecular mechanism underlying Pb tolerance and contributed to cultivation of Pb-tolerant varieties in maize.

14.
Int J Mol Sci ; 23(17)2022 Aug 28.
Article de Anglais | MEDLINE | ID: mdl-36077153

RÉSUMÉ

Salinization seriously threatens the normal growth of maize, especially at the seedling stage. Recent studies have demonstrated that circular RNAs (circRNAs) play vital roles in the regulation of plant stress resistance. Here, we performed a genome-wide association study (GWAS) on the survival rate of 300 maize accessions under a salt stress treatment. A total of 5 trait-associated SNPs and 86 candidate genes were obtained by the GWAS. We performed RNA sequencing for 28 transcriptome libraries derived from 2 maize lines with contrasting salt tolerance under normal and salt treatment conditions. A total of 1217 highly expressed circRNAs were identified, of which 371 were responsive to a salt treatment. Using PCR and Sanger sequencing, we verified the reliability of these differentially expressed circRNAs. An integration of the GWAS and RNA-Seq analyses uncovered two differentially expressed hub genes (Zm00001eb013650 and Zm00001eb198930), which were regulated by four circRNAs. Based on these results, we constructed a regulation model of circRNA/miRNA/mRNA that mediated salt stress tolerance in maize. By conducting hub gene-based association analyses, we detected a favorable haplotype in Zm00001eb198930, which was responsible for high salt tolerance. These results help to clarify the regulatory relationship between circRNAs and their target genes as well as to develop salt-tolerant lines for maize breeding.


Sujet(s)
ARN circulaire , Zea mays , Analyse de profil d'expression de gènes , Étude d'association pangénomique , Amélioration des plantes , ARN circulaire/génétique , Reproductibilité des résultats , Tolérance au sel/génétique , Transcriptome , Zea mays/génétique
15.
Mol Breed ; 42(2): 7, 2022 Feb.
Article de Anglais | MEDLINE | ID: mdl-37309320

RÉSUMÉ

The discovery and characterization of the opaque endosperm gene provide ideas and resources for the production and application of maize. We found an o213 mutant whose phenotype was opaque and shrunken endosperm with semi-dwarf plant height. The protein, lipid, and starch contents in the o213 endosperm were significantly decreased, while the free amino acid content in the o213 endosperm significantly increased. The aspartic acid, asparagine, and lysine contents were raised in the o213 endosperm by 6.5-, 8.5-, and 1.7-fold, respectively. Genetic analysis showed that this o213 mutant is a recessive single-gene mutation. The position mapping indicated that o213 is located in a 468-kb region that contains 11 protein-encoding genes on the long arm of chromosome 5. The coding sequence analysis of candidate genes between the WT and o213 showed that ZmYSL2 had only a single-base substitution (A-G) in the fifth exon, which caused methionine substitution to valine. Sequence analysis and the allelic test showed that o213 is a new mutant allele of ZmYSL2. The qRT-PCR results indicated that o213 is highly expressed in the stalks and anthers. Subcellular localization studies showed that o213 is a membrane transporter. In the variation analysis of o213, the amplification of 65 inbred lines in GWAS showed that this 3-bp deletion of the first exon of o213 was found only in temperate inbred lines, implying that the gene was artificially affected in the selection process. Our results suggest that o213 is an important endosperm development gene and may serve as a genetic resource. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01278-9.

16.
ISA Trans ; 126: 276-287, 2022 Jul.
Article de Anglais | MEDLINE | ID: mdl-34332749

RÉSUMÉ

The overhead contact system (OCS), as the power source of electrified railway, has a complex composition and various types of faults, so it places high requirements on its fault prevention. In recent years, with the establishment of railway OCS fault database, association analysis has been used to implement fault prevention from system-wise perspective and provide guidance for operation and maintenance. However, due to the hierarchical structure of fault database, the existing frequent itemset mining has a lot of redundancy in the results, and cannot locate the most precise faults, which affects the decision-making and makes troubleshooting lack of pertinence. To address this issue, this paper proposed a new concept, called marginal frequent itemset, which is an itemset composed of as precise items as possible in hierarchical database that meets the threshold, and an alternative mining task: mining marginal frequent itemsets instead of all the frequent itemsets. Two methods, path transform and descending depth of itemset, are proposed for achieving mining a set of marginal frequent itemsets. Two novel measures, margin degree and marginal information quantity, are proposed to evaluate the content of the mining results. An efficient algorithm, named MFIMCL, is developed for mining cross-level marginal frequent itemsets from railway OCS fault database. Our performance study shows that MFIMCL has high performance and can obtain more key information and reduce the number of results. Furthermore, marginal frequent itemset mining can simplify the fault relation network constructed by association rules and optimize the decision-making process for fault prevention of railway OCS.

17.
Theor Appl Genet ; 135(1): 273-290, 2022 Jan.
Article de Anglais | MEDLINE | ID: mdl-34661697

RÉSUMÉ

KEY MESSAGE: Two read depth methods were jointly used in next-generation sequencing data to identify deletions in maize population. GWAS by deletions were analyzed for gene expression pattern and classical traits, respectively. Many studies have confirmed that structural variation (SV) is pervasive throughout the maize genome. Deletion is one type of SV that may impact gene expression and cause phenotypic changes in quantitative traits. In this study, two read count approaches were used to analyze the deletions in the whole-genome sequencing data of 270 maize inbred lines. A total of 19,754 deletion windows overlapped 12,751 genes, which were unevenly distributed across the genome. The deletions explained population structure well and correlated with genomic features. The deletion proportion of genes was determined to be negatively correlated with its expression. The detection of gene expression quantitative trait loci (eQTL) indicated that local eQTL were fewer but had larger effects than distant ones. The common associated genes were related to basic metabolic processes, whereas unique associated genes with eQTL played a role in the stress or stimulus responses in multiple tissues. Compared with the eQTL detected by SNPs derived from the same sequencing data, 89.4% of the associated genes could be detected by both markers. The effect of top eQTL detected by SNPs was usually larger than that detected by deletions for the same gene. A genome-wide association study (GWAS) on flowering time and plant height illustrated that only a few loci could be consistently captured by SNPs, suggesting that combining deletion and SNP for GWAS was an excellent strategy to dissect trait architecture. Our findings will provide insights into characteristic and biological function of genome-wide deletions in maize.


Sujet(s)
Délétion de gène , Variation génétique , Génome végétal , Zea mays/génétique , Étude d'association pangénomique , Polymorphisme de nucléotide simple , Locus de caractère quantitatif , Séquençage du génome entier , Zea mays/physiologie
18.
Plant J ; 109(4): 980-991, 2022 02.
Article de Anglais | MEDLINE | ID: mdl-34822726

RÉSUMÉ

The ability of immature maize (Zea mays) embryos to form embryonic calluses (ECs) is highly genotype dependent, which limits transgenic breeding development in maize. Here, we report the association map-based cloning of ZmSAUR15 using an association panel (AP) consisting of 309 inbred lines with diverse formation abilities for ECs. We demonstrated that ZmSAUR15, which encodes a small auxin-upregulated RNA, acts as a negative effector in maize EC induction. Polymorphisms in the ZmSAUR15 promoter that influence the expression of ZmSAUR15 transcripts modulate the EC induction capacity in maize. ZmSAUR15 is involved in indole-3-acetic acid biosynthesis and cell division in immature embryo-derived callus. The ability of immature embryos to induce EC formation can be improved by the knockout of ZmSAUR15, which consequently increases the callus regeneration efficiency. Our study provides new insights into overcoming the genotypic limitations associated with EC formation and improving genetic transformation in maize.


Sujet(s)
Régulation de l'expression des gènes végétaux , Variation génétique , Protéines et peptides de signalisation intracellulaire/génétique , Protéines végétales/génétique , Zea mays/génétique , Arabidopsis/génétique , Protéines d'Arabidopsis , Division cellulaire , Protéines et peptides de signalisation intracellulaire/métabolisme , Phénotype , Protéines végétales/métabolisme , Végétaux génétiquement modifiés , Régions promotrices (génétique) , Zea mays/métabolisme
19.
Plants (Basel) ; 10(11)2021 Oct 22.
Article de Anglais | MEDLINE | ID: mdl-34834621

RÉSUMÉ

Gray leaf spot (GLS), caused by the fungal pathogen Cercospora zeina (C. zeina), is one of the most destructive soil-borne diseases in maize (Zea mays L.), and severely reduces maize production in Southwest China. However, the mechanism of resistance to GLS is not clear and few resistant alleles have been identified. Two maize inbred lines, which were shown to be resistant (R6) and susceptible (S8) to GLS, were injected by C. zeina spore suspensions. Transcriptome analysis was carried out with leaf tissue at 0, 6, 24, 144, and 240 h after inoculation. Compared with 0 h of inoculation, a total of 667 and 419 stable common differentially expressed genes (DEGs) were found in the resistant and susceptible lines across the four timepoints, respectively. The DEGs were usually enriched in 'response to stimulus' and 'response to stress' in GO term analysis, and 'plant-pathogen interaction', 'MAPK signaling pathways', and 'plant hormone signal transduction' pathways, which were related to maize's response to GLS, were enriched in KEGG analysis. Weighted-Genes Co-expression Network Analysis (WGCNA) identified two modules, while twenty hub genes identified from these indicated that plant hormone signaling, calcium signaling pathways, and transcription factors played a central role in GLS sensing and response. Combing DEGs and QTL mapping, five genes were identified as the consensus genes for the resistance of GLS. Two genes, were both putative Leucine-rich repeat protein kinase family proteins, specifically expressed in R6. In summary, our results can provide resources for gene mining and exploring the mechanism of resistance to GLS in maize.

20.
J Plant Physiol ; 266: 153520, 2021 Nov.
Article de Anglais | MEDLINE | ID: mdl-34536904

RÉSUMÉ

Aluminum (Al) toxicity is one of the primary factors limiting crop production in acid soils worldwide. The cell wall is the major target of Al toxicity owing to the presence of many Al binding sites. Previous studies have found that XTH, encoding xyloglucan endohydrolase (XEH) and xyloglucan endotransglucosylase (XET), could participate in cell wall extension and affect the binding ability of the cell wall to Al by impeding the activities of these two enzymes. In this study, we found that ZmXTH, an XTH gene in maize, was involved in Al detoxification. The Al-induced up-regulation of ZmXTH occurred in the roots, prominently in the root tips. Additionally, the expression of ZmXTH was specifically induced by Al3+ but no other divalent or trivalent cations. Compared with the wild-type Arabidopsis, ZmXTH overexpressing plants grew more healthy and had decreased Al content in their root and root cell wall after Al stress. Overall, the results suggest that ZmXTH could confer the Al tolerance of transgenic Arabidopsis plants by reducing the Al accumulation in their roots and cell walls.


Sujet(s)
Aluminium , Arabidopsis/effets des médicaments et des substances chimiques , Glycosyltransferase/métabolisme , Zea mays/enzymologie , Aluminium/toxicité , Arabidopsis/génétique , Paroi cellulaire/métabolisme , Régulation de l'expression des gènes végétaux , Glycosyltransferase/génétique , Racines de plante/génétique , Racines de plante/métabolisme , Végétaux génétiquement modifiés/effets des médicaments et des substances chimiques , Zea mays/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...