Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Pharmacol Res ; 185: 106458, 2022 Nov.
Article de Anglais | MEDLINE | ID: mdl-36152740

RÉSUMÉ

Our initial studies detected elevated levels of 3,4-dihydroxyphenyllactic acid (DHPLA) in urine samples of patients with severe heart disease when compared with healthy subjects. Given the reported anti-inflammatory properties of DHPLA and related dihydroxylated phenolic acids (DPAs), we embarked on an exploratory multi-centre investigation in patients with no urinary tract infections to establish the possible pathophysiological significance and therapeutic implications of these findings. Chinese and Caucasian patients being treated for severe heart disease or those conditions associated with inflammation (WBC ≥ 10 ×109/L or hsCRP ≥ 3.0 mg/L) and/or hypoxia (PaO2 ≤ 75 mmHg) were enrolled; their urine samples were analyzed by HPLC, HPLC-MS, GC-MS and biotransformation assays. DHPLA was detected in urine samples of patients, but undetectable in healthy volunteers. Dynamic monitoring of inpatients undergoing treatment showed their DHPLA levels declined in proportion to their clinical improvement. In DHPLA-positive patients' fecal samples, Proteus vulgaris and P. mirabilis were more abundant than healthy volunteers. In culture, these gut bacteria were capable of reversible interconversion between DOPA and DHPLA. Furthermore, porcine and rodent organs were able to metabolize DOPA to DHPLA and related phenolic acids. The elevated levels of DHPLA in these patients suggest bioactive DPAs are generated de novo as part of a human's defense mechanism against disease. Because DHPLA isolated from Radix Salvia miltiorrhizae has a multitude of pharmacological activities, these data underpin the scientific basis of this medicinal plant's ethnopharmacological applications as well as highlighting the therapeutic potential of endogenous, natural or synthetic DPAs and their derivatives in humans.


Sujet(s)
Cardiopathies , Inflammation , Humains , Suidae , Animaux , Hypoxie , Dopa
2.
Se Pu ; 39(9): 950-957, 2021 Sep.
Article de Chinois | MEDLINE | ID: mdl-34486834

RÉSUMÉ

Chromatography is an important branch of analytical chemistry that focuses on the separation and analysis of complex structures. Following more than 100 years of development and improvement, chromatography theory and technology have gradually become sophisticated. It has become a coalition of science, technology, and art. Recently, chromatography has been successfully used in combination with mass spectrometry, nuclear magnetic resonance spectroscopy, and atomic emission spectroscopy. Chromatography and the combination with other techniques has significantly improved the analysis of complex systems, such as the environment, food, petrochemicals, biological specimens, and medicine. As one of the oldest healing systems, Traditional Chinese Medicine (TCM) has served to maintain the health of people in China and worldwide for thousands of years. Therefore, it has become a core representative of traditional Chinese culture. In the past two years, TCM has been widely used to treat COVID-19, especially in patients with mild symptoms. Recently, Chinese government emphasized the inheritance and innovation of TCM and stepped up efforts to promote its modernization. TCM includes herbal medicine, acupuncture, moxibustion, massage, food therapy, and physical exercise, such as Tai Chi. In most cases, the patients are administered a mixture of TCM formulas containing more than two herbal medicines, resulting in a highly complicated compound mixture. There is no doubt that long-term clinical practices have demonstrated the safety and therapeutic effect of TCM. However, the compound mixture must be simplified to identify the active compounds. This is mainly because of the existence of carcinogenic compounds, pesticides, and heavy metal residues introduced through plantation and production processes. Moreover, enzymes within the human system generate further new compounds in response to the entry of the TCM containing thousands of components. Consequently, the complex TCM and organism systems interact with each other, constituting a giant complex drug-organism system. The analysis of this giant complex system is acknowledged as a key aspect in the modernization process of TCM. In the last 20 years, many studies have been conducted to screen and identify effective compounds in TCM. These effective compounds can be either the original compounds or new metabolic components generated in vivo. All these efforts are aimed at simplifying the components of TCM and elucidating the therapeutic mechanism. It is well known that chromatography can provide technical support for complex systems owing to its unique advantage of outstanding separation and analysis capabilities. Therefore, chromatography and its combination with other technologies have become mainstream technologies for promoting the compilation of molecular structure, information, digitalization, and modernization of TCM. This paper reviews the research and application of chromatography and combination technologies in a giant complex TCM formula-organism system. Furthermore, the authors briefly introduce and summarize the understanding, research ideas, and activities of the authors' team on the modernization of TCM. "Liang Guanxi" and "He strategy" are proposed as novel strategies for studying the giant complex drug-organism system. A distinguished technology integrated with mathematical model of causal relation, combined receptor chromatography, identification of chemical molecular structure and evaluating of pharmacological activities was established. It was successfully employed to determine the core effector-response substances of "Liang Guanxi" herb pairs in a giant complex drug-organism system. Subsequently, utilizing the proposed technology of Combination of Traditional Chinese Medicine Molecular Chemistry, the author's team designed and developed four series of innovative drugs. Inspired by the hundred years of chromatography history and thousands of years of TCM culture, the future development of chromatographic technology is expected. Furthermore, the mechanisms of TCM in medical healthcare, prevention, and treatment of diseases are likely be explained through chromatography, leading to a new strategy to realize the molecularization and digitalization of TCM, which is beneficial to the development of original new drugs.


Sujet(s)
Chromatographie , Médecine traditionnelle chinoise , Humains
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...