Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cell Mol Biol (Noisy-le-grand) ; 68(11): 16-19, 2022 Nov 30.
Article de Anglais | MEDLINE | ID: mdl-37114314

RÉSUMÉ

FOXP2 is a gene involved in language development and function. Neanderthals and humans share the same coding region of the gene, although the formers are thought to have exhibited less sophisticated language abilities. In this paper, we report on several human-specific changes in two functional enhancers of FOXP2. Two of these variants are located within the binding sites for the transcription factors POLR2A and SMARCC1, respectively. Interestingly, SMARCC1 is involved in brain development and vitamin D metabolism. We hypothesize that the human specific change in this position might have resulted in a different regulation pattern of FOXP2 expression in our species compared to extinct hominins, with a potential impact on our language abilities.


Sujet(s)
Facteurs de transcription Forkhead , Humains , Facteurs de transcription Forkhead/génétique , Facteurs de transcription Forkhead/métabolisme
2.
BMC Med Genet ; 20(1): 65, 2019 05 02.
Article de Anglais | MEDLINE | ID: mdl-31046704

RÉSUMÉ

BACKGROUND: Mutations in the coding region of FOXP2 are known to cause speech and language impairment. However, it is not clear how dysregulation of the gene contributes to language deficit. Interestingly, microdeletions of the region downstream the gene have been associated with cognitive deficits. METHODS: Here, we investigate changes in FOXP2 expression in the SK-N-MC neuroblastoma human cell line after deletion by CRISPR-Cas9 of two enhancers located downstream of the gene. RESULTS: Deletion of any of these two functional enhancers downregulates FOXP2, but also upregulates the closest 3' gene MDFIC. Because this effect is not statistically significant in a HEK 293 cell line, derived from the human kidney, both enhancers might confer a tissue specific regulation to both genes. We have also found that the deletion of any of these enhancers downregulates six well-known FOXP2 target genes in the SK-N-MC cell line. CONCLUSIONS: We expect these findings contribute to a deeper understanding of how FOXP2 and MDFIC are regulated to pace neuronal development supporting cognition, speech and language.


Sujet(s)
Éléments activateurs (génétique) , Facteurs de transcription Forkhead/génétique , Lignée cellulaire tumorale , Clustered regularly interspaced short palindromic repeats , Cellules HEK293 , Humains
3.
Mol Cytogenet ; 8: 36, 2015.
Article de Anglais | MEDLINE | ID: mdl-26060509

RÉSUMÉ

BACKGROUND: We report on a young female, who presents with a severe speech and language disorder and a balanced de novo complex chromosomal rearrangement, likely to have resulted from a chromosome 7 pericentromeric inversion, followed by a chromosome 7 and 11 translocation. RESULTS: Using molecular cytogenetics, we mapped the four breakpoints to 7p21.1-15.3 (chromosome position: 20,954,043-21,001,537, hg19), 7q31 (chromosome position: 114,528,369-114,556,605, hg19), 7q21.3 (chromosome position: 93,884,065-93,933,453, hg19) and 11p12 (chromosome position: 38,601,145-38,621,572, hg19). These regions contain only non-coding transcripts (ENSG00000232790 on 7p21.1 and TCONS_00013886, TCONS_00013887, TCONS_00014353, TCONS_00013888 on 7q21) indicating that no coding sequences are directly disrupted. The breakpoint on 7q31 mapped 200 kb downstream of FOXP2, a well-known language gene. No splice site or non-synonymous coding variants were found in the FOXP2 coding sequence. We were unable to detect any changes in the expression level of FOXP2 in fibroblast cells derived from the proband, although this may be the result of the low expression level of FOXP2 in these cells. CONCLUSIONS: We conclude that the phenotype observed in this patient either arises from a subtle change in FOXP2 regulation due to the disruption of a downstream element controlling its expression, or from the direct disruption of non-coding RNAs.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...