RÉSUMÉ
Aluminosilicates are adsorbents able to bind mycotoxins, and their chemical modification increases their affinity to adsorb low-polarity mycotoxins. To further investigate if the inclusion of salts in bentonite modifies its adsorptive capacity, we studied T-2 toxin adsorption in natural bentonite (NB) and when modified with quaternary ammonium salts differing in polarity and chain length: myristyl trimethyl ammonium bromide (B14), cetyl trimethyl ammonium bromide (B16) and benzyl dimethyl stearyl ammonium chloride (B18). The results showed that quaternary salts made bentonite: displace monovalent (Na+1, K+1) and divalent (Mg+2, Ca+2) ions; reduce its porosity; change its compaction and structure, becoming more crystalline and ordered; and modify the charge balance of sheets. T-2 adsorption was higher in all modified materials compared to NB (p ≤ 0.0001), and B16 (42.96%) better adsorbed T-2 compared to B18 (35.80%; p = 0.0066). B14 (38.40%) showed no differences compared to B16 and B18 (p > 0.05). We described the T-2 adsorption mechanism in B16, in which hydrogen bond interactions, Van der Waals forces and the replacement of the salt by T-2 were found. Our results showed that interaction types due to the inclusion in B16 might be more important than the hydrocarbon chain length to improve the adsorptive capacity of bentonite.
Sujet(s)
Toxine T-2 , Polluants chimiques de l'eau , Bentonite/composition chimique , Adsorption , Sels , Cations , Polluants chimiques de l'eau/composition chimiqueRÉSUMÉ
There is an expanding market for beer of different flavors. This study aimed to prepare a craft Belgian-style pale ale with a non-Saccharomyces yeast. Pichia kudriavzevii 4A was used as a sole starter culture, and malted barley as the only substrate. The ingredients and brewing process were carefully monitored to ensure the quality and innocuousness of the beverage. During fermentation, the yeast consumed 89.7% of total sugars and produced 13.8% v/v of ethanol. The product was fermented and then aged for 8 days, adjusted to 5% v/v alcohol, and analyzed. There were no traces of mycotoxins, lead, arsenic, methanol, or microbiological contamination that would compromise consumer health. According to the physicochemical analysis, the final ethanol concentration (5.2% v/v) and other characteristics complied with national and international guidelines. The ethyl acetate and isoamyl alcohol present are known to confer sweet and fruity flavors. The sensory test defined the beverage as refreshing and as having an apple and pear flavor, a banana aroma, and a good level of bitterness. The judges preferred it over a commercial reference sample of Belgian-style pale ale made from S. cerevisiae. Hence, P. kudriavzevii 4A has the potential for use in the beer industry.
RÉSUMÉ
The effect of exogenous application of jasmonic acid (JA) on the concentration of main terpenes and density of glandular trichomes was investigated in the Mexican oregano, propagated from seeds from 3 localities. JA 1 mM was applied locally and to the whole plant. JA locally applied increased the number of trichomes, with a mean of 20 trichomes more with respect to the controls in plants from Tecomavaca and Zapotitlán Salinas, and significantly increased the thymol concentration by 185% systemically and 255% locally, compared to the control. JA applied to the whole plant decreased the number of trichomes and increased the concentration of caryophyllene from 0.79 to 1.7 mg g-1, and α-caryophyllene from 0.3 to 0.8 mg g-1 in plants from San Rafael with reference to water control. The results suggest a plasticity of morphologic and phytochemical responses, and a potential use of JA to improve phenolic monoterpenes and sesquiterpenes production.