Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
PLoS One ; 15(6): e0234335, 2020.
Article de Anglais | MEDLINE | ID: mdl-32516348

RÉSUMÉ

Shoot fly (Atherigona naqvii) is one of the major insects affecting spring maize in North India and can cause yield loss up to 60 per cent. The genetics of insect resistance is complex as influenced by genotypic background, insect population and climatic conditions. Therefore, quantitative trait loci (QTL) mapping is a highly effective approach for studying genetically complex forms of insect resistance. The objective of the present study was to dissect the genetic basis of resistance and identification of genomic regions associated with shoot fly resistance. A total of 107 F2 population derived from the cross CM143 (resistant) x CM144 (susceptible) was genotyped with 120 SSR markers. Phenotypic data were recorded on replicated F2:3 progenies for various component traits imparting resistance to shoot fly at different time intervals. Resistance to shoot fly was observed to be under polygenic control as evidenced by the identification of 19 putative QTLs governed by overdominance to partial dominance and additive gene actions. The major QTLs conditioning shoot fly resistance viz., qDH9.1 (deadheart) and qEC9.1 (oviposition) explaining 15.03 and 18.89 per cent phenotypic variance, respectively were colocalized on chromosome 9. These QTLs are syntenic to regions of chromosome 10 of sorghum which were also accounted for deadheart and oviposition suggesting that the same gene block may be responsible for shoot fly resistance. The candidate genes such as cysteine protease, subtilisin-chymotrypsin inhibitor, cytochrome P450 involved in synthesis of alleochemicals, receptor kinases, glossy15 and ubiquitin-proteasome degradation pathway were identified within the predicted QTL regions. This is the first reported mapping of QTLs conferring resistance to shoot fly in maize, and the markers identified here will be a valuable resource for developing elite maize cultivars with resistance to shoot fly.


Sujet(s)
Résistance à la maladie/génétique , Sorghum/génétique , Zea mays/génétique , Animaux , Cartographie chromosomique/méthodes , Grains comestibles/génétique , Génomique/méthodes , Génotype , Inde , Insectes , Répétitions microsatellites/génétique , Lutte biologique contre les nuisibles/méthodes , Phénotype , Maladies des plantes/génétique , Locus de caractère quantitatif/génétique
2.
Theor Appl Genet ; 116(3): 313-24, 2008 Feb.
Article de Anglais | MEDLINE | ID: mdl-17989954

RÉSUMÉ

Stripe rust, caused by Puccinia striiformis West. f.sp. tritici, is one of the most damaging diseases of wheat worldwide. Forty genes for stripe rust resistance have been catalogued so far, but the majority of them are not effective against emerging pathotypes. Triticum monococcum and T. boeoticum have excellent levels of resistance to rusts, but so far, no stripe rust resistance gene has been identified or transferred from these species. A set of 121 RILs generated from a cross involving T. monococcum (acc. pau14087) and T. boeoticum (acc. pau5088) was screened for 3 years against a mixture of pathotypes under field conditions. The parental accessions were susceptible to all the prevalent pathotypes at the seedling stage, but resistant at the adult plant stage. Genetic analysis of the RIL population revealed the presence of two genes for stripe rust resistance, with one gene each being contributed by each of the parental lines. A linkage map with 169 SSR and RFLP loci generated from a set of 93 RILs was used for mapping these resistance genes. Based on phenotypic data for 3 years and the pooled data, two QTLs, one each in T. monococcum acc. pau14087 and T. boeoticum acc. pau5088, were detected for resistance in the RIL population. The QTL in T. monococcum mapped on chromosome 2A in a 3.6 cM interval between Xwmc407 and Xwmc170, whereas the QTL from T. boeoticum mapped on 5A in 8.9 cM interval between Xbarc151 and Xcfd12 and these were designated as QYrtm.pau-2A and QYrtb.pau-5A, respectively. Based on field data for 3 years, their R2 values were 14 and 24%, respectively. T. monococcum acc. pau14087 and three resistant RILs were crossed to hexaploid wheat cvs WL711 and PBW343, using T. durum as a bridging species with the objective of transferring these genes into hexaploid wheat. The B genome of T. durum suppressed resistance in the F1 plants, but with subsequent backcrossing one resistance gene could be transferred from one of the RILs to the hexaploid wheat background. This gene was derived from T. boeoticum acc. pau5088 as indicated by co-introgression of T. boeoticum sequences linked to stripe rust resistance QTL, QYrtb.pau-5A. Homozygous resistant progenies with 40-42 chromosomes have been identified.


Sujet(s)
Pain , Diploïdie , Gènes de plante , Immunité innée/génétique , Maladies des plantes/génétique , Triticum/génétique , Triticum/microbiologie , Cartographie chromosomique , Ségrégation des chromosomes , Croisements génétiques , Champignons/physiologie , Marqueurs génétiques , Génome végétal , Génotype , Immunité innée/immunologie , Modes de transmission héréditaire , Maladies des plantes/immunologie , Maladies des plantes/microbiologie , Pollen/cytologie , Polyploïdie , Locus de caractère quantitatif/génétique , Reproductibilité des résultats
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE