Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 42
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Front Mol Neurosci ; 17: 1418606, 2024.
Article de Anglais | MEDLINE | ID: mdl-39165716

RÉSUMÉ

Objective: Preclinical models of seizures and epilepsy in rodents contributed substantially to the discovery of currently available antiseizure medications. These were also broadly used for investigation of processes of epileptogenesis. Nevertheless, rodent models pose some limitations, thus, new models using alternative species are in high demand. The aim of this study was to describe a new model of seizures/epilepsy induced by the cholinomimetic agent, pilocarpine (PILO), in larval zebrafish. Methods: Local field potential (LFP) recordings were conducted to analyze electroencephalographic discharges and correlate it with larval behavior. Hematoxylin and eosin (H&E) staining, as well as TUNEL staining were performed to analyze morphology and apoptosis, respectively. Real-time quantitative polymerase chain reaction (qRT-PCR) was undertaken for gene expression analysis. Results: Acute exposure to PILO, in a concentration-dependent manner, induces electroencephalographic discharges in larval zebrafish, which behaviorally manifest as decreased locomotion and moving time, but enhanced movement velocity. The PILO-induced seizure-like activity is behaviorally distinct from this induced by the application of chemoconvulsant pentylenetetrazole (PTZ). Zebrafish larvae previously exposed to PILO (2 h), after a washing out period, exhibit spontaneous, unprovoked discharges and apoptotic changes in their brains. Significance: Here, we comprehensively investigated a new model of PILO-induced seizures/epilepsy in larval zebrafish. We propose that this model may be used to study epileptogenesis and for antiseizure drug screening purposes.

2.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-39000086

RÉSUMÉ

Currently, pharmacotherapy provides successful seizure control in around 70% of patients with epilepsy; however, around 30% of cases are still resistant to available treatment. Therefore, effective anti-epileptic therapy still remains a challenge. In our study, we utilized two mouse lines selected for low (LA) and high (HA) endogenous opioid system activity to investigate the relationship between down- or upregulation of the opioid system and susceptibility to seizures. Pentylenetetrazole (PTZ) is a compound commonly used for kindling of generalized tonic-clonic convulsions in animal models. Our experiments revealed that in the LA mice, PTZ produced seizures of greater intensity and shorter latency than in HA mice. This observation suggests that proper opioid system tone is crucial for preventing the onset of generalized tonic-clonic seizures. Moreover, a combination of an opioid receptor antagonist-naloxone-and a GABA receptor agonist-diazepam (DZP)-facilitates a significant DZP-sparing effect. This is particularly important for the pharmacotherapy of neurological patients, since benzodiazepines display high addiction risk. In conclusion, our study shows a meaningful, protective role of the endogenous opioid system in the prevention of epileptic seizures and that disturbances in that balance may facilitate seizure occurrence.


Sujet(s)
Pentétrazol , Crises épileptiques , Animaux , Pentétrazol/toxicité , Souris , Crises épileptiques/métabolisme , Crises épileptiques/traitement médicamenteux , Crises épileptiques/induit chimiquement , Mâle , Naloxone/pharmacologie , Modèles animaux de maladie humaine , Diazépam/pharmacologie , Prédisposition aux maladies , Anticonvulsivants/pharmacologie , Anticonvulsivants/usage thérapeutique , Antagonistes narcotiques/pharmacologie
3.
Nutrients ; 16(12)2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38931280

RÉSUMÉ

Postnatal depression is a common and severe complication of childbirth. It is an important public health problem with significant implications for both mothers and children. The exact mechanisms underlying and the factors influencing the occurrence of postnatal depression remain unclear. The literature suggests that certain dietary deficiencies during pregnancy and the postnatal period may contribute to a greater risk of maternal depression. This review focuses on the role of selenium in postnatal depression. It collects evidence from published interventional and observational studies investigating the relationship between selenium intake during the antenatal and postnatal periods and the mental status of postpartum women and summarises information about biological mechanisms that may underlie the association between selenium status and postnatal depression. The review includes studies identified through electronic searches of Medline (via PubMed) and Google Scholar databases until December 2023. Despite the small number of relevant studies and their potential methodological limitations, the findings suggest that optimizing selenium status may support the prevention and treatment of postnatal depression. Further longitudinal and interventional studies are necessary to confirm the clinical significance of these effects.


Sujet(s)
Dépression du postpartum , Sélénium , Humains , Sélénium/déficit , Dépression du postpartum/prévention et contrôle , Dépression du postpartum/étiologie , Femelle , Grossesse , État nutritionnel , Période du postpartum , Compléments alimentaires , Phénomènes physiologiques nutritionnels maternels , Adulte
4.
Int J Mol Sci ; 25(7)2024 Apr 04.
Article de Anglais | MEDLINE | ID: mdl-38612831

RÉSUMÉ

Many people around the world suffer from neurodegenerative diseases associated with cognitive impairment. As life expectancy increases, this number is steadily rising. Therefore, it is extremely important to search for new treatment strategies and to discover new substances with potential neuroprotective and/or cognition-enhancing effects. This study focuses on investigating the potential of astragaloside IV (AIV), a triterpenoid saponin with proven acetylcholinesterase (AChE)-inhibiting activity naturally occurring in the root of Astragalus mongholicus, to attenuate memory impairment. Scopolamine (SCOP), an antagonist of muscarinic cholinergic receptors, and lipopolysaccharide (LPS), a trigger of neuroinflammation, were used to impair memory processes in the passive avoidance (PA) test in mice. This memory impairment in SCOP-treated mice was attenuated by prior intraperitoneal (ip) administration of AIV at a dose of 25 mg/kg. The attenuation of memory impairment by LPS was not observed. It can therefore be assumed that AIV does not reverse memory impairment by anti-inflammatory mechanisms, although this needs to be further verified. All doses of AIV tested did not affect baseline locomotor activity in mice. In the post mortem analysis by mass spectrometry of the body tissue of the mice, the highest content of AIV was found in the kidneys, then in the spleen and liver, and the lowest in the brain.


Sujet(s)
Saponines , Triterpènes , Humains , Animaux , Souris , Acetylcholinesterase , Saponines/pharmacologie , Triterpènes/pharmacologie , Troubles de la mémoire/traitement médicamenteux , Lipopolysaccharides/toxicité
5.
Cells ; 13(5)2024 Mar 05.
Article de Anglais | MEDLINE | ID: mdl-38474418

RÉSUMÉ

In the human body, the majority of tryptophan is metabolized through the kynurenine pathway. This consists of several metabolites collectively called the kynurenines and includes, among others, kynurenic acid, L-kynurenine, or quinolinic acid. The wealth of metabolites, as well as the associated molecular targets and biological pathways, bring about a situation wherein even a slight imbalance in the kynurenine levels, both in the periphery and central nervous system, have broad consequences regarding general health. Cinnabarinic acid (CA) is the least known trace kynurenine, and its physiological and pathological roles are not widely understood. Some studies, however, indicate that it might be neuroprotective. Information on its hepatoprotective properties have also emerged, although these are pioneering studies and need to be replicated. Therefore, in this review, I aim to present and critically discuss the current knowledge on CA and its role in physiological and pathological settings to guide future studies.


Sujet(s)
Cynurénine , Tryptophane , Humains , Cynurénine/métabolisme , Tryptophane/métabolisme , Oxazines , Acide quinolinique/métabolisme
6.
Biomed Pharmacother ; 172: 116234, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38325264

RÉSUMÉ

Previously, we demonstrated that palmatine (PALM) - an isoquinoline alkaloid from Berberis sibrica radix, exerted antiseizure activity in the pentylenetetrazole (PTZ)-induced seizure assay in larval zebrafish. The aim of the present study was to more precisely characterize PALM as a potential anticonvulsant drug candidate. A range of zebrafish and mouse seizure/epilepsy models were applied in the investigation. Immunostaining analysis was conducted to assess the changes in mouse brains, while in silico molecular modelling was performed to determine potential targets for PALM. Accordingly, PALM had anticonvulsant effect in ethyl 2-ketopent-4-enoate (EKP)-induced seizure assay in zebrafish larvae as well as in the 6 Hz-induced psychomotor seizure threshold and timed infusion PTZ tests in mice. The protective effect in the EKP-induced seizure assay was confirmed in the local field potential recordings. PALM did not affect seizures in the gabra1a knockout line of zebrafish larvae. In the scn1Lab-/- zebrafish line, pretreatment with PALM potentiated seizure-like behaviour of larvae. Repetitive treatment with PALM, however, did not reduce development of PTZ-induced seizure activity nor prevent the loss of parvalbumin-interneurons in the hippocampus of the PTZ kindled mice. In silico molecular modelling revealed that the noted anticonvulsant effect of PALM in EKP-induced seizure assay might result from its interactions with glutamic acid decarboxylase and/or via AMPA receptor non-competitive antagonism. Our study has demonstrated the anticonvulsant activity of PALM in some experimental models of seizures, including a model of pharmacoresistant seizures induced by EKP. These results indicate that PALM might be a suitable new drug candidate but the precise mechanism of its anticonvulsant activity has to be determined.


Sujet(s)
Anticonvulsivants , Alcaloïdes de type berbérine , Épilepsie , Souris , Animaux , Anticonvulsivants/effets indésirables , Danio zébré , Crises épileptiques/induit chimiquement , Crises épileptiques/traitement médicamenteux , Épilepsie/traitement médicamenteux , Pentétrazol/pharmacologie
7.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article de Anglais | MEDLINE | ID: mdl-37958494

RÉSUMÉ

Gastric cancer is the most common cancer and remains the leading cause of cancer death worldwide. In this study, the anticancer action of magnoflorine isolated via counter-current chromatography from the methanolic extract of Berberis vulgaris root against gastric cancer in models of primary ACC-201 and AGS and metastatic MKN-74 and NCI-N87 cell lines was analyzed. Cell viability and proliferation were tested through the use of MTT and BrdU tests, respectively. Cell cycle progression and apoptosis were evaluated using flow cytometry. The interaction of magnoflorine and docetaxel has been examined through isobolographic analysis. Moreover, potential toxicity was verified in zebrafish in an in vivo model. Gastric cancer cell lines revealed different responses to magnoflorine treatment with regard to viability/proliferation, apoptosis induction and cell cycle inhibition without any undesirable changes in the development of larval zebrafish at the tested concentrations. What is more, magnoflorine in combination with docetaxel produced an additive pharmacological interaction in all studied gastric cancer cell lines, which may suggest a complementary mechanism of action of both compounds. Taken together, these findings provide a foundation for the possibility of magnoflorine as a potential therapeutic approach for gastric cancer and merits further investigation, which may pave the way for clinical uses of magnoflorine.


Sujet(s)
Adénocarcinome , Tumeurs de l'estomac , Animaux , Humains , Docetaxel/pharmacologie , Docetaxel/usage thérapeutique , Tumeurs de l'estomac/anatomopathologie , Danio zébré , Prolifération cellulaire , Lignée cellulaire tumorale , Apoptose , Adénocarcinome/traitement médicamenteux
8.
Front Mol Neurosci ; 16: 1221665, 2023.
Article de Anglais | MEDLINE | ID: mdl-37701853

RÉSUMÉ

Traditionally, selected plant sources have been explored for medicines to treat convulsions. This continues today, especially in countries with low-income rates and poor medical systems. However, in the low-income countries, plant extracts and isolated drugs are in high demand due to their good safety profiles. Preclinical studies on animal models of seizures/epilepsy have revealed the anticonvulsant and/or antiepileptogenic properties of, at least some, herb preparations or plant metabolites. Still, there is a significant number of plants known in traditional medicine that exert anticonvulsant activity but have not been evaluated on animal models. Zebrafish is recognized as a suitable in vivo model of epilepsy research and is increasingly used as a screening platform. In this review, the results of selected preclinical studies are summarized to provide credible information for the future development of effective screening methods for plant-derived antiseizure/antiepileptic therapeutics using zebrafish models. We compared zebrafish vs. rodent data to show the translational value of the former in epilepsy research. We also surveyed caveats in methodology. Finally, we proposed a pipeline for screening new anticonvulsant plant-derived drugs in zebrafish ("from tank to bedside and back again").

9.
Pharmaceuticals (Basel) ; 16(9)2023 Aug 31.
Article de Anglais | MEDLINE | ID: mdl-37765042

RÉSUMÉ

Oleanolic acid (OA), as a ubiquitous compound in the plant kingdom, is studied for both its neuroprotective and neurotoxic properties. The mechanism of acetylcholinesterase (AChE) inhibitory potential of OA is investigated using molecular dynamic simulations (MD) and docking as well as biomimetic tests. Moreover, the in vitro SH-SY5Y human neuroblastoma cells and the in vivo zebrafish model were used. The inhibitory potential towards the AChE enzyme is examined using the TLC-bioautography assay (the IC50 value is 9.22 µM). The CH-π interactions between the central fragment of the ligand molecule and the aromatic cluster created by the His440, Phe288, Phe290, Phe330, Phe331, Tyr121, Tyr334, Trp84, and Trp279 side chains are observed. The results of the in vitro tests using the SH-SY5Y cells indicate that the viability rate is reduced to 71.5%, 61%, and 43% at the concentrations of 100 µg/mL, 300 µg/mL, and 1000 µg/mL, respectively, after 48 h of incubation, whereas cytotoxicity against the tested cell line with the IC50 value is 714.32 ± 32.40 µg/mL. The in vivo tests on the zebrafish prove that there is no difference between the control and experimental groups regarding the mortality rate and morphology (p > 0.05).

10.
Cells ; 12(18)2023 09 06.
Article de Anglais | MEDLINE | ID: mdl-37759447

RÉSUMÉ

Proper nutrition and supplementation during pregnancy and breastfeeding are crucial for the development of offspring. Kynurenine (KYN) is the central metabolite of the kynurenine pathway and a direct precursor of other metabolites that possess immunoprotective or neuroactive properties, with the ultimate effect on fetal neurodevelopment. To date, no studies have evaluated the effects of KYN on early embryonic development. Thus, the aim of our study was to determine the effect of incubation of larvae with KYN in different developmental periods on the behavior of 5-day-old zebrafish. Additionally, the effects exerted by KYN administered on embryonic days 1-7 (ED 1-7) on the behavior of adult offspring of rats were elucidated. Our study revealed that the incubation with KYN induced changes in zebrafish behavior, especially when zebrafish embryos or larvae were incubated with KYN from 1 to 72 h post-fertilization (hpf) and from 49 to 72 hpf. KYN administered early during pregnancy induced subtle differences in the neurobehavioral development of adult offspring. Further research is required to understand the mechanism of these changes. The larval zebrafish model can be useful for studying disturbances in early brain development processes and their late behavioral consequences. The zebrafish-medium system may be applicable in monitoring drug metabolism in zebrafish.


Sujet(s)
Cynurénine , Danio zébré , Grossesse , Femelle , Rats , Animaux , Cynurénine/métabolisme , Danio zébré/métabolisme
11.
Int J Mol Sci ; 24(16)2023 Aug 18.
Article de Anglais | MEDLINE | ID: mdl-37629132

RÉSUMÉ

The aim of this study is to evaluate the anticonvulsant potential of schisandrin B, a main ingredient of Schisandra chinensis extracts. Schisandrin B showed anticonvulsant activity in the zebrafish larva pentylenetetrazole acute seizure assay but did not alter seizure thresholds in the intravenous pentylenetetrazole test in mice. Schisandrin B crosses the blood-brain barrier, which we confirmed in our in silico and in vivo analyses; however, the low level of its unbound fraction in the mouse brain tissue may explain the observed lack of anticonvulsant activity. Molecular docking revealed that the anticonvulsant activity of the compound in larval zebrafish might have been due to its binding to a benzodiazepine site within the GABAA receptor and/or the inhibition of the glutamate NMDA receptor. Although schisandrin B showed a beneficial anticonvulsant effect, toxicological studies revealed that it caused serious developmental impairment in zebrafish larvae, underscoring its teratogenic properties. Further detailed studies are needed to precisely identify the properties, pharmacological effects, and safety of schisandrin B.


Sujet(s)
Anticonvulsivants , Danio zébré , Animaux , Souris , Anticonvulsivants/toxicité , Simulation de docking moléculaire , Pentétrazol/toxicité , Crises épileptiques/induit chimiquement , Crises épileptiques/traitement médicamenteux , Acide glutamique , Larve , Récepteurs GABA-A
12.
Int J Mol Sci ; 24(11)2023 May 23.
Article de Anglais | MEDLINE | ID: mdl-37298103

RÉSUMÉ

The main aim of the study was to assess the acetylcholinesterase-inhibitory potential of triterpenoid saponins (astragalosides) found in the roots of Astragalus mongholicus. For this purpose, the TLC bioautography method was applied and then the IC50 values were calculated for astragalosides II, III and IV (5.9 µM; 4.2 µM, and 4.0 µM, respectively). Moreover, molecular dynamics simulations were carried outto assess the affinity of the tested compounds for POPC and POPG-containing lipid bilayers, which in this case are the models of the blood-brain barrier (BBB). All determined free energy profiles confirmed that astragalosides exhibit great affinity for the lipid bilayer. A good correlation was obtained when comparing the logarithm of n-octanol/water partition coefficient (logPow) lipophilicity descriptor values with the smallest values of free energy of the determined 1D profiles. The affinity for the lipid bilayers changes in the same order as the corresponding logPow values, i.e.,: I > II > III~IV. All compounds exhibit a high and also relatively similar magnitude of binding energies, varying from ca. -55 to -51 kJ/mol. Apositive correlation between the experimentally-determined IC50 values and the theoretically-predicted binding energies expressed by the correlation coefficient value equal 0.956 was observed.


Sujet(s)
Saponines , Triterpènes , Astragalus membranaceus/composition chimique , Acetylcholinesterase/métabolisme , Anticholinestérasiques/pharmacologie , Anticholinestérasiques/métabolisme , Biomimétique , Double couche lipidique/métabolisme , Triterpènes/composition chimique , Saponines/composition chimique
13.
Cell Mol Life Sci ; 80(5): 133, 2023 Apr 25.
Article de Anglais | MEDLINE | ID: mdl-37185787

RÉSUMÉ

The pharmacological activation of the GPR39 receptor has been proposed as a novel strategy for treating seizures; however, this hypothesis has not been verified experimentally. TC-G 1008 is a small molecule agonist increasingly used to study GPR39 receptor function but has not been validated using gene knockout. Our aim was to assess whether TC-G 1008 produces anti-seizure/anti-epileptogenic effects in vivo and whether the effects are mediated by GPR39. To obtain this goal we utilized various animal models of seizures/epileptogenesis and GPR39 knockout mice model. Generally, TC-G 1008 exacerbated behavioral seizures. Furthermore, it increased the mean duration of local field potential recordings in response to pentylenetetrazole (PTZ) in zebrafish larvae. It facilitated the development of epileptogenesis in the PTZ-induced kindling model of epilepsy in mice. We demonstrated that TC-G 1008 aggravated PTZ-epileptogenesis by selectively acting at GPR39. However, a concomitant analysis of the downstream effects on the cyclic-AMP-response element binding protein in the hippocampus of GPR39 knockout mice suggested that the molecule also acts via other targets. Our data argue against GPR39 activation being a viable therapeutic strategy for treating epilepsy and suggest investigating whether TC-G 1008 is a selective agonist of the GPR39 receptor.


Sujet(s)
Épilepsie , Pentétrazol , Animaux , Souris , Facteur neurotrophique dérivé du cerveau/métabolisme , Épilepsie/induit chimiquement , Épilepsie/génétique , Épilepsie/métabolisme , Hippocampe/métabolisme , Souris knockout , Pentétrazol/métabolisme , Récepteurs couplés aux protéines G/génétique , Récepteurs couplés aux protéines G/métabolisme , Danio zébré/métabolisme
14.
Int J Mol Sci ; 23(18)2022 Sep 07.
Article de Anglais | MEDLINE | ID: mdl-36142236

RÉSUMÉ

Gastric cancer (GC) has high incidence rates and constitutes a common cause of cancer mortality. Despite advances in treatment, GC remains a challenge in cancer therapy which is why novel treatment strategies are needed. The interest in natural compounds has increased significantly in recent years because of their numerous biological activities, including anti-cancer action. The isolation of the bioactive compounds from Coptis chinensis Franch was carried out with the Centrifugal Partition Chromatography (CPC) technique, using a biphasic solvent system composed of chloroform (CHCl3)-methanol (MeOH)-water (H2O) (4:3:3, v/v) with an addition of hydrochloric acid and trietylamine. The identity of the isolated alkaloids was confirmed using a high resolution HPLC-MS chromatograph. The phytochemical constituents of Coptis chinensis such as berberine, jatrorrhizine, palmatine and coptisine significantly inhibited the viability and growth of gastric cancer cell lines ACC-201 and NCI-N87 in a dose-dependent manner, with coptisine showing the highest efficacy as revealed using MTT and BrdU assays, respectively. Flow cytometry analysis confirmed the coptisine-induced population of gastric cancer cells in sub-G1 phase and apoptosis. The combination of coptisine with cisplatin at the fixed-ratio of 1:1 exerted synergistic and additive interactions in ACC-201 and NCI-N87, respectively, as determined by means of isobolographic analysis. In in vivo assay, coptisine was safe for developing zebrafish at the dose equivalent to the highest dose active in vitro, but higher doses (greater than 10 times) caused morphological abnormalities in larvae. Our findings provide a theoretical foundation to further studies on more detailed mechanisms of the bioactive compounds from Coptis chinensis Franch anti-cancer action that inhibit GC cell survival in in vitro settings.


Sujet(s)
Alcaloïdes , Alcaloïdes de type berbérine , Berbérine , Coptis , Médicaments issus de plantes chinoises , Tumeurs de l'estomac , Alcaloïdes/analyse , Alcaloïdes/pharmacologie , Animaux , Berbérine/analogues et dérivés , Berbérine/pharmacologie , Alcaloïdes de type berbérine/pharmacologie , Broxuridine , Chloroforme , Cisplatine , Coptis/composition chimique , Coptis chinensis , Médicaments issus de plantes chinoises/composition chimique , Acide chlorhydrique , Isoquinoléines , Méthanol , Solvants , Tumeurs de l'estomac/traitement médicamenteux , Eau , Danio zébré
15.
J Med Chem ; 65(17): 11703-11725, 2022 09 08.
Article de Anglais | MEDLINE | ID: mdl-35984707

RÉSUMÉ

(R)-7 [(R)-AS-1] showed broad-spectrum antiseizure activity across in vivo mouse seizure models: maximal electroshock (MES), 6 Hz (32/44 mA), acute pentylenetetrazol (PTZ), and PTZ-kindling. A remarkable separation between antiseizure activity and CNS-related adverse effects was also observed. In vitro studies with primary glia cultures and COS-7 cells expressing the glutamate transporter EAAT2 showed enhancement of glutamate uptake, revealing a stereoselective positive allosteric modulator (PAM) effect, further supported by molecular docking simulations. (R)-7 [(R)-AS-1] was not active in EAAT1 and EAAT3 assays and did not show significant off-target activity, including interactions with targets reported for marketed antiseizure drugs, indicative of a novel and unprecedented mechanism of action. Both in vivo pharmacokinetic and in vitro absorption, distribution, metabolism, excretion, toxicity (ADME-Tox) profiles confirmed the favorable drug-like potential of the compound. Thus, (R)-7 [(R)-AS-1] may be considered as the first-in-class small-molecule PAM of EAAT2 with potential for further preclinical and clinical development in epilepsy and possibly other CNS disorders.


Sujet(s)
Anticonvulsivants , Épilepsie , Animaux , Anticonvulsivants/pharmacologie , Anticonvulsivants/usage thérapeutique , Épilepsie/induit chimiquement , Épilepsie/traitement médicamenteux , Souris , Simulation de docking moléculaire , Pentétrazol , Crises épileptiques/induit chimiquement , Crises épileptiques/traitement médicamenteux
16.
Acta Neuropathol ; 144(1): 107-127, 2022 07.
Article de Anglais | MEDLINE | ID: mdl-35551471

RÉSUMÉ

Mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures is associated with common variation at rs7587026, located in the promoter region of SCN1A. We sought to explore possible underlying mechanisms. SCN1A expression was analysed in hippocampal biopsy specimens of individuals with mesial temporal lobe epilepsy with hippocampal sclerosis who underwent surgical treatment, and hippocampal neuronal cell loss was quantitatively assessed using immunohistochemistry. In healthy individuals, hippocampal volume was measured using MRI. Analyses were performed stratified by rs7587026 type. To study the functional consequences of increased SCN1A expression, we generated, using transposon-mediated bacterial artificial chromosome transgenesis, a zebrafish line expressing exogenous scn1a, and performed EEG analysis on larval optic tecta at 4 day post-fertilization. Finally, we used an in vitro promoter analysis to study whether the genetic motif containing rs7587026 influences promoter activity. Hippocampal SCN1A expression differed by rs7587026 genotype (Kruskal-Wallis test P = 0.004). Individuals homozygous for the minor allele showed significantly increased expression compared to those homozygous for the major allele (Dunn's test P = 0.003), and to heterozygotes (Dunn's test P = 0.035). No statistically significant differences in hippocampal neuronal cell loss were observed between the three genotypes. Among 597 healthy participants, individuals homozygous for the minor allele at rs7587026 displayed significantly reduced mean hippocampal volume compared to major allele homozygotes (Cohen's D = - 0.28, P = 0.02), and to heterozygotes (Cohen's D = - 0.36, P = 0.009). Compared to wild type, scn1lab-overexpressing zebrafish larvae exhibited more frequent spontaneous seizures [one-way ANOVA F(4,54) = 6.95 (P < 0.001)]. The number of EEG discharges correlated with the level of scn1lab overexpression [one-way ANOVA F(4,15) = 10.75 (P < 0.001]. Finally, we showed that a 50 bp promoter motif containing rs7587026 exerts a strong regulatory role on SCN1A expression, though we could not directly link this to rs7587026 itself. Our results develop the mechanistic link between rs7587026 and mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures. Furthermore, we propose that quantitative precision may be important when increasing SCN1A expression in current strategies aiming to treat seizures in conditions involving SCN1A haploinsufficiency, such as Dravet syndrome.


Sujet(s)
Épilepsie temporale , Épilepsie , Canal sodique voltage-dépendant NAV1.1/métabolisme , Crises convulsives fébriles , Protéines de poisson-zèbre/métabolisme , Animaux , Épilepsie/génétique , Épilepsie temporale/génétique , Génomique , Gliose/anatomopathologie , Hippocampe/anatomopathologie , Humains , Canal sodique voltage-dépendant NAV1.1/génétique , Sclérose/anatomopathologie , Crises convulsives fébriles/complications , Crises convulsives fébriles/génétique , Danio zébré
17.
Sci Rep ; 12(1): 6464, 2022 04 19.
Article de Anglais | MEDLINE | ID: mdl-35440600

RÉSUMÉ

Mother's milk is widely recommended as complete food for the offspring in earliest postnatal time. However, the knowledge about detailed composition and the physiological role of bioactive components of breast milk is incomplete. Therefore, the aim of our study was to determine the content of kynurenine (KYN) in human breast milk during lactation and to explore the effects exerted by intragastric KYN administration from birth to weaning on physical and psychomotor development of adult rats. We found that KYN is consistently present in human milk and its content gradually increased from day 4 to 28 after delivery and that it is present in commercial baby formulas in amounts noticeably exceeding its physiological range. Animal studies showed that KYN supplementation resulted in a marked elevation of absorptive surface of rat intestine and in enhanced expression of both, aryl hydrocarbon receptor and G protein-coupled receptor 35 in the intestinal tissue in rats. Moreover, we discovered that KYN administration from birth to weaning resulted in neurobehavioral changes in adult rats. Therefore, we postulate that further research is required to thoroughly understand the function of KYN in early developmental stages of mammals and to ensure the safety of its presence in baby food products.


Sujet(s)
Préparation pour nourrissons , Lait humain , Animaux , Allaitement naturel , Femelle , Humains , Nourrisson , Cynurénine , Mammifères , Mères , Rats
18.
Int J Mol Sci ; 22(14)2021 Jul 20.
Article de Anglais | MEDLINE | ID: mdl-34299361

RÉSUMÉ

Zingiber officinale is one of the most frequently used medicinal herbs in Asia. Using rodent seizure models, it was previously shown that Zingiber officinale hydroethanolic extract exerts antiseizure activity, but the active constituents responsible for this effect have not been determined. In this paper, we demonstrated that Zingiber officinale methanolic extract exerts anticonvulsant activity in the pentylenetetrazole (PTZ)-induced hyperlocomotion assay in larval zebrafish. Next, we isolated 6-gingerol (6-GIN)-a major constituent of Zingiber officinale rhizoma. We observed that 6-GIN exerted potent dose-dependent anticonvulsant activity in the PTZ-induced hyperlocomotion seizure assay in zebrafish, which was confirmed electroencephalographically. To obtain further insight into the molecular mechanisms of 6-GIN antiseizure activity, we assessed the concentration of two neurotransmitters in zebrafish, i.e., inhibitory γ-aminobutyric acid (GABA) and excitatory glutamic acid (GLU), and their ratio after exposure to acute PTZ dose. Here, 6-GIN decreased GLU level and reduced the GLU/GABA ratio in PTZ-treated fish compared with only PTZ-bathed fish. This activity was associated with the decrease in grin2b, but not gabra1a, grin1a, gria1a, gria2a, and gria3b expression in PTZ-treated fish. Molecular docking to the human NR2B-containing N-methyl-D-aspartate (NMDA) receptor suggests that 6-GIN might act as an inhibitor and interact with the amino terminal domain, the glutamate-binding site, as well as within the ion channel of the NR2B-containing NMDA receptor. In summary, our study reveals, for the first time, the anticonvulsant activity of 6-GIN. We suggest that this effect might at least be partially mediated by restoring the balance between GABA and GLU in the epileptic brain; however, more studies are needed to prove our hypothesis.


Sujet(s)
Anticonvulsivants/pharmacologie , Catéchols/pharmacologie , Alcools gras/pharmacologie , Pentétrazol/pharmacologie , Extraits de plantes/pharmacologie , Crises épileptiques/induit chimiquement , Crises épileptiques/traitement médicamenteux , Zingiber officinale/composition chimique , Animaux , Encéphale/effets des médicaments et des substances chimiques , Encéphale/métabolisme , Épilepsie/traitement médicamenteux , Épilepsie/métabolisme , Larve/effets des médicaments et des substances chimiques , Larve/métabolisme , Récepteurs du N-méthyl-D-aspartate/métabolisme , Crises épileptiques/métabolisme , Danio zébré , Acide gamma-amino-butyrique/métabolisme
19.
Pharmacol Ther ; 225: 107845, 2021 09.
Article de Anglais | MEDLINE | ID: mdl-33831481

RÉSUMÉ

Kynurenine (KYN), a main metabolite of tryptophan in mammals, is a direct precursor of kynurenic acid, anthranilic acid and 3-hydroxykynurenine (3-HK). Under physiological conditions, KYN is produced endogenously mainly in the liver by tryptophan 2,3-dioxygenase (TDO). Tumorigenesis and inflammatory conditions increase the activity of another KYN synthetizing enzyme, indoleamine 2,3-dioxygenase (IDO). However, knowledge about the exogenous sources and the fate of KYN in mammals is still limited. While most papers deal with the contribution of KYN to pathologies of the central nervous system, its role in the periphery has almost been ignored. KYN is a ligand for the aryl hydrocarbon receptor (AhR). As a receptor for KYN and its downstream metabolites, AhR is involved in several physiological and pathological conditions, including inflammation and carcinogenesis. Recent studies have shown that KYN suppresses immune response and is strongly involved in the process of carcinogenesis and tumour metastasis. Thus, inhibition of activity of the enzymes responsible for KYN synthesis, TDO, IDO or genetic manipulation leading to reduction of KYN synthesis, could be considered as innovative strategies for improving the efficacy of immunotherapy. Surprisingly, however, genetic or pharmacological approaches for reducing tryptophan catabolism to KYN do not necessarily result in decrease of KYN level in the main circulation. This review aims to summarize the current knowledge of KYN fate and function and to emphasize its importance for vital physiological and pathological processes.


Sujet(s)
Cynurénine , Humains , Cynurénine/pharmacologie
20.
Mol Neurobiol ; 58(2): 877-894, 2021 Feb.
Article de Anglais | MEDLINE | ID: mdl-33057948

RÉSUMÉ

Persons with certain single nucleotide polymorphisms (SNPs) in the CACNA1D gene (encoding voltage-gated calcium channel subunit alpha 1-D) have increased risk of developing neuropsychiatric disorders such as bipolar, schizophrenia and autism. The molecular consequences of SNPs on gene expression and protein function are not well understood. Thus, the use of animal models to determine genotype-phenotype correlations is critical to understanding disease pathogenesis. Here, we describe the behavioural changes in larval zebrafish carrying an essential splice site mutation (sa17298) in cacna1da. Heterozygous mutation resulted in 50% reduction of splice variants 201 and 202 (haploinsufficiency), while homozygosity increased transcript levels of variant 201 above wild type (WT; gain-of-function, GOF). Due to low homozygote viability, we focused primarily on performing the phenotypic analysis on heterozygotes. Indeed, cacna1dasa17298/WT larvae displayed hyperlocomotion-a behaviour characterised in zebrafish as a surrogate phenotype for epilepsy, anxiety or psychosis-like behaviour. Follow-up tests ruled out anxiety or seizures, however, as neither thigmotaxis defects nor epileptiform-like discharges in larval brains were observed. We therefore focused on testing for potential "psychosis-like" behaviour by assaying cacna1dasa17298/WT larval locomotor activity under constant light, during light-dark transition and in startle response to dark flashes. Furthermore, exposure of larvae to the antipsychotics, risperidone and haloperidol reversed cacna1da-induced hyperactivity to WT levels while valproate decreased but did not reverse hyperactivity. Together, these findings demonstrate that cacna1da haploinsufficiency induces behaviours in larval zebrafish analogous to those observed in rodent models of psychosis. Future studies on homozygous mutants will determine how cacna1d GOF alters behaviour in this context.


Sujet(s)
Comportement animal , Canaux calciques de type L/génétique , Mutation/génétique , Schizophrénie/génétique , Protéines de poisson-zèbre/génétique , Danio zébré/génétique , Allèles , Animaux , Canaux calciques de type L/métabolisme , Obscurité , Modèles animaux de maladie humaine , Électroencéphalographie , Génotype , Hétérozygote , Larve/génétique , Activité motrice , Inhibition du réflexe de sursaut , Sites d'épissage d'ARN/génétique , Réflexe de sursaut , Schizophrénie/physiopathologie , Facteurs temps , Protéines de poisson-zèbre/métabolisme
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE