Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
ACS Omega ; 7(35): 30700-30709, 2022 Sep 06.
Article de Anglais | MEDLINE | ID: mdl-36068861

RÉSUMÉ

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is evolving with mutations in the spike protein, especially in the receptor-binding domain (RBD). The failure of public health measures in some countries to contain the spread of the disease has given rise to novel viral variants with increased transmissibility. However, key questions about how quickly the variants can spread remain unclear. Herein, we performed a structural investigation using molecular dynamics simulations and determined dissociation constant (K D) values using surface plasmon resonance assays of three fast-spreading SARS-CoV-2 variants, alpha, beta, and gamma, as well as genetic factors in host cells that may be related to the viral infection. Our results suggest that the SARS-CoV-2 variants facilitate their entry into the host cell by moderately increased binding affinities to the human ACE2 receptor, different torsions in hACE2 mediated by RBD variants, and an increased spike exposure time to proteolytic enzymes. We also found that other host cell aspects, such as gene and isoform expression of key genes for the infection (ACE2, FURIN, and TMPRSS2), may have few contributions to the SARS-CoV-2 variant infectivity. In summary, we concluded that a combination of viral and host cell factors allows SARS-CoV-2 variants to increase their abilities to spread faster than the wild type.

2.
J Phys Chem Lett ; 11(24): 10446-10453, 2020 Dec 17.
Article de Anglais | MEDLINE | ID: mdl-33269932

RÉSUMÉ

The SARS-CoV-2 pandemic has already killed more than one million people worldwide. To gain entry, the virus uses its Spike protein to bind to host hACE-2 receptors on the host cell surface and mediate fusion between viral and cell membranes. As initial steps leading to virus entry involve significant changes in protein conformation as well as in the electrostatic environment in the vicinity of the Spike/hACE-2 complex, we explored the sensitivity of the interaction to changes in ionic strength through computational simulations and surface plasmon resonance. We identified two regions in the receptor-binding domain (RBD), E1 and E2, which interact differently with hACE-2. At high salt concentration, E2-mediated interactions are weakened but are compensated by strengthening E1-mediated hydrophobic interactions. These results provide a detailed molecular understanding of Spike RBD/hACE-2 complex formation and stability under a wide range of ionic strengths.


Sujet(s)
Angiotensin-converting enzyme 2/composition chimique , SARS-CoV-2 , Glycoprotéine de spicule des coronavirus/composition chimique , Séquence d'acides aminés , Sites de fixation , Humains , Liaison hydrogène , Interactions hydrophobes et hydrophiles , Simulation de dynamique moléculaire , Concentration osmolaire , Liaison aux protéines , Conformation des protéines , Domaines protéiques
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE