Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 277
Filtrer
1.
ESC Heart Fail ; 2024 Sep 12.
Article de Anglais | MEDLINE | ID: mdl-39263947

RÉSUMÉ

AIMS: Proteomic profiling offers an expansive approach to biomarker discovery and mechanistic hypothesis generation for LV remodelling, a critical component of heart failure (HF). We sought to identify plasma proteins cross-sectionally associated with left ventricular (LV) size and geometry in a diverse population-based cohort without known cardiovascular disease (CVD). METHODS AND RESULTS: Among participants of the Multi-Ethnic Study of Atherosclerosis (MESA), we quantified plasma abundances of 1305 proteins using an aptamer-based platform at exam 1 (2000-2002) and exam 5 (2010-2011) and assessed LV structure by cardiac magnetic resonance (CMR) at the same time points. We used multivariable linear regression with robust variance to assess cross-sectional associations between plasma protein abundances and LV structural characteristics at exam 1, reproduced findings in later-life at exam 5, and explored relationships of associated proteins using annotated enrichment analysis. We studied 763 participants (mean age 60 ± 10 years at exam 1; 53% female; 19% Black race; 31% Hispanic ethnicity). Following adjustment for renal function and traditional CVD risk factors, plasma levels of 3 proteins were associated with LV mass index at both time points with the same directionality (FDR < 0.05): leptin (LEP), renin (REN), and cathepsin-D (CTSD); 20 with LV end-diastolic volume index: LEP, NT-proBNP, histone-lysine N-methyltransferase (EHMT2), chordin-like protein 1 (CHRDL1), tumour necrosis factor-inducible gene 6 protein (TNFAIP6), NT-3 growth factor receptor (NTRK3), c5a anaphylatoxin (C5), neurogenic locus notch homologue protein 3 (NOTCH3), ephrin-B2 (EFNB2), osteomodulin (OMD), contactin-4 (CNTN4), gelsolin (GSN), stromal cell-derived factor 1 (CXCL12), calcineurin subunit B type 1 (PPP3R1), insulin-like growth factor 1 receptor (IGF1R), bone sialoprotein 2 (IBSP), interleukin-11 (IL-11), follistatin-related protein 1 (FSTL1), periostin (POSTN), and biglycan (BGN); and 4 with LV mass-to-volume ratio: RGM domain family member B (RGMB), transforming growth factor beta receptor type 3 (TGFBR3), ephrin-A2 (EFNA2), and cell adhesion molecule 3 (CADM3). Functional annotation implicated regulation of the PI3K-Akt pathway, bone morphogenic protein signalling, and cGMP-mediated signalling. CONCLUSIONS: We report proteomic profiling of LV size and geometry, which identified novel associations and reinforced previous findings on biomarker candidates for LV remodelling and HF. If validated, these proteins may help refine risk prediction and identify novel therapeutic targets for HF.

4.
Cell Metab ; 36(9): 2156-2166.e9, 2024 Sep 03.
Article de Anglais | MEDLINE | ID: mdl-39111307

RÉSUMÉ

Choline is an essential nutrient for the biosynthesis of phospholipids, neurotransmitters, and one-carbon metabolism with a critical step being its import into mitochondria. However, the underlying mechanisms and biological significance remain poorly understood. Here, we report that SLC25A48, a previously uncharacterized mitochondrial inner-membrane carrier protein, controls mitochondrial choline transport and the synthesis of choline-derived methyl donors. We found that SLC25A48 was required for brown fat thermogenesis, mitochondrial respiration, and mitochondrial membrane integrity. Choline uptake into the mitochondrial matrix via SLC25A48 facilitated the synthesis of betaine and purine nucleotides, whereas loss of SLC25A48 resulted in increased production of mitochondrial reactive oxygen species and imbalanced mitochondrial lipids. Notably, human cells carrying a single nucleotide polymorphism on the SLC25A48 gene and cancer cells lacking SLC25A48 exhibited decreased mitochondrial choline import, increased oxidative stress, and impaired cell proliferation. Together, this study demonstrates that SLC25A48 regulates mitochondrial choline catabolism, bioenergetics, and cell survival.


Sujet(s)
Choline , Mitochondries , Choline/métabolisme , Humains , Mitochondries/métabolisme , Animaux , Souris , Protéines de transport de la membrane mitochondriale/métabolisme , Protéines de transport de la membrane mitochondriale/génétique , Transport biologique , Souris de lignée C57BL , Mâle , Stress oxydatif , Espèces réactives de l'oxygène/métabolisme , Thermogenèse/génétique
5.
bioRxiv ; 2024 Aug 26.
Article de Anglais | MEDLINE | ID: mdl-39211135

RÉSUMÉ

Circulating metabolite levels partly reflect the state of human health and diseases, and can be impacted by genetic determinants. Hundreds of loci associated with circulating metabolites have been identified; however, most findings focus on predominantly European ancestry or single study analyses. Leveraging the rich metabolomics resources generated by the NHLBI Trans-Omics for Precision Medicine (TOPMed) Program, we harmonized and accessibly cataloged 1,729 circulating metabolites among 25,058 ancestrally-diverse samples. We provided recommendations for outlier and imputation handling to process metabolite data, as well as a general analytical framework. We further performed a pooled analysis following our practical recommendations and discovered 1,778 independent loci associated with 667 metabolites. Among 108 novel locus - metabolite pairs, we detected not only novel loci within previously implicated metabolite associated genes, but also novel genes (such as GAB3 and VSIG4 located in the X chromosome) that have putative roles in metabolic regulation. In the sex-stratified analysis, we revealed 85 independent locus-metabolite pairs with evidence of sexual dimorphism, including well-known metabolic genes such as FADS2 , D2HGDH , SUGP1 , UTG2B17 , strongly supporting the importance of exploring sex difference in the human metabolome. Taken together, our study depicted the genetic contribution to circulating metabolite levels, providing additional insight into the understanding of human health.

6.
Nat Med ; 30(6): 1711-1721, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38834850

RÉSUMÉ

Despite the wide effects of cardiorespiratory fitness (CRF) on metabolic, cardiovascular, pulmonary and neurological health, challenges in the feasibility and reproducibility of CRF measurements have impeded its use for clinical decision-making. Here we link proteomic profiles to CRF in 14,145 individuals across four international cohorts with diverse CRF ascertainment methods to establish, validate and characterize a proteomic CRF score. In a cohort of around 22,000 individuals in the UK Biobank, a proteomic CRF score was associated with a reduced risk of all-cause mortality (unadjusted hazard ratio 0.50 (95% confidence interval 0.48-0.52) per 1 s.d. increase). The proteomic CRF score was also associated with multisystem disease risk and provided risk reclassification and discrimination beyond clinical risk factors, as well as modulating high polygenic risk of certain diseases. Finally, we observed dynamicity of the proteomic CRF score in individuals who undertook a 20-week exercise training program and an association of the score with the degree of the effect of training on CRF, suggesting potential use of the score for personalization of exercise recommendations. These results indicate that population-based proteomics provides biologically relevant molecular readouts of CRF that are additive to genetic risk, potentially modifiable and clinically translatable.


Sujet(s)
Capacité cardiorespiratoire , Protéomique , Humains , Protéomique/méthodes , Mâle , Femelle , Adulte d'âge moyen , Facteurs de risque , Adulte , Sujet âgé , Études de cohortes , Exercice physique/physiologie
7.
Atherosclerosis ; 395: 117587, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38823353

RÉSUMÉ

BACKGROUND AND AIMS: Previous studies have derived and validated an HDL apolipoproteomic score (pCAD) that predicts coronary artery disease (CAD) risk. However, the associations between pCAD and markers of cardiometabolic health in healthy adults are not known, nor are the effects of regular exercise on pCAD. METHODS: A total of 641 physically inactive adults free of cardiovascular disease from the HERITAGE Family Study completed 20 weeks of exercise training. The pCAD index (range 0-100) was calculated using measurements of apolipoproteins A-I, C-I, C-II, C-III, and C-IV from ApoA-I-tagged serum (higher index = higher CAD risk). The associations between pCAD index and cardiometabolic traits at baseline and their training responses were assessed with Spearman correlation and general linear models. A Bonferroni correction of p < 8.9 × 10-04 was used to determine statistical significance. RESULTS: The mean ± SD baseline pCAD index was 29 ± 32, with 106 (16.5 %) participants classified as high CAD risk. At baseline, pCAD index was positively associated with blood pressure, systemic inflammation, and body composition. HDL size, VO2max, and HDL-C were negatively associated with pCAD index at baseline. Of those classified as high CAD risk at baseline, 52 (49 %) were reclassified as normal risk after training. Following training, pCAD index changes were inversely correlated (p < 1.4 × 10-04) with changes in HDL-C, HDL size, and LDL size. CONCLUSIONS: A higher pCAD index was associated with a worse cardiometabolic profile at baseline but improved with regular exercise. The results from this study highlight the potential role of HDL apolipoproteins as therapeutic targets for lifestyle interventions, particularly in high-risk individuals.


Sujet(s)
Marqueurs biologiques , Facteurs de risque cardiométabolique , Exercice physique , Humains , Mâle , Femelle , Adulte d'âge moyen , Adulte , Marqueurs biologiques/sang , Lipoprotéines HDL/sang , Maladie des artères coronaires/sang , Appréciation des risques , Cholestérol HDL/sang , Apolipoprotéines/sang , Traitement par les exercices physiques , Facteurs temps , Protéomique/méthodes , Mode de vie sédentaire
8.
Diabetes Care ; 47(9): 1597-1607, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38935559

RÉSUMÉ

OBJECTIVE: We aimed to identify metabolites associated with loss of glycemic control in youth-onset type 2 diabetes. RESEARCH DESIGN AND METHODS: We measured 480 metabolites in fasting plasma samples from the TODAY (Treatment Options for Type 2 Diabetes in Adolescents and Youth) study. Participants (N = 393; age 10-17 years) were randomly assigned to metformin, metformin plus rosiglitazone, or metformin plus lifestyle intervention. Additional metabolomic measurements after 36 months were obtained in 304 participants. Cox models were used to assess baseline metabolites, interaction of metabolites and treatment group, and change in metabolites (0-36 months), with loss of glycemic control adjusted for age, sex, race, treatment group, and BMI. Metabolite prediction models of glycemic failure were generated using elastic net regression and compared with clinical risk factors. RESULTS: Loss of glycemic control (HbA1c ≥8% or insulin therapy) occurred in 179 of 393 participants (mean 12.4 months). Baseline levels of 33 metabolites were associated with loss of glycemic control (q < 0.05). Associations of hexose and xanthurenic acid with treatment failure differed by treatment randomization; youths with higher baseline levels of these two compounds had a lower risk of treatment failure with metformin alone. For three metabolites, changes from 0 to 36 months were associated with loss of glycemic control (q < 0.05). Changes in d-gluconic acid and 1,5-AG/1-deoxyglucose, but not baseline levels of measured metabolites, predicted treatment failure better than changes in HbA1c or measures of ß-cell function. CONCLUSIONS: Metabolomics provides insight into circulating small molecules associated with loss of glycemic control and may highlight metabolic pathways contributing to treatment failure in youth-onset diabetes.


Sujet(s)
Marqueurs biologiques , Diabète de type 2 , Hypoglycémiants , Metformine , Humains , Diabète de type 2/sang , Diabète de type 2/traitement médicamenteux , Diabète de type 2/métabolisme , Mâle , Femelle , Adolescent , Metformine/usage thérapeutique , Enfant , Marqueurs biologiques/sang , Hypoglycémiants/usage thérapeutique , Régulation de la glycémie , Glycémie/métabolisme , Rosiglitazone/usage thérapeutique , Hémoglobine glyquée/métabolisme
9.
JAMA Cardiol ; 9(8): 713-722, 2024 Aug 01.
Article de Anglais | MEDLINE | ID: mdl-38865108

RÉSUMÉ

Importance: Blood pressure response during acute exercise (exercise blood pressure [EBP]) is associated with the future risk of hypertension and cardiovascular disease (CVD). Biochemical characterization of EBP could inform disease biology and identify novel biomarkers of future hypertension. Objective: To identify protein markers associated with EBP and test their association with incident hypertension. Design, Setting, and Participants: This study assayed 4977 plasma proteins in 681 healthy participants (from 763 assessed) of the Health, Risk Factors, Exercise Training and Genetics (HERITAGE; data collection from January 1993 to December 1997 and plasma proteomics from January 2019 to January 2020) Family Study at rest who underwent 2 cardiopulmonary exercise tests. Individuals were free of CVD at the time of recruitment. Individuals with resting SBP ≥160 mm Hg or DBP ≥100 mm Hg or taking antihypertensive drug therapy were excluded from the study. The association between resting plasma protein levels to both resting BP and EBP was evaluated. Proteins associated with EBP were analyzed for their association with incident hypertension in the Framingham Heart Study (FHS; n = 1177) and validated in the Jackson Heart Study (JHS; n = 772) and Multi-Ethnic Study of Atherosclerosis (MESA; n = 1367). Proteins associated with incident hypertension were tested for putative causal links in approximately 700 000 individuals using cis-protein quantitative loci mendelian randomization (cis-MR). Data were analyzed from January 2023 to January 2024. Exposures: Plasma proteins. Main Outcomes and Measures: EBP was defined as the BP response during a fixed workload (50 W) on a cycle ergometer. Hypertension was defined as BP ≥140/90 mm Hg or taking antihypertensive medication. Results: Among the 681 participants in the HERITAGE Family Study, the mean (SD) age was 34 (13) years; 366 participants (54%) were female; 238 (35%) were self-reported Black and 443 (65%) were self-reported White. Proteomic profiling of EBP revealed 34 proteins that would not have otherwise been identified through profiling of resting BP alone. Transforming growth factor ß receptor 3 (TGFBR3) and prostaglandin D2 synthase (PTGDS) had the strongest association with exercise systolic BP (SBP) and diastolic BP (DBP), respectively (TGFBR3: exercise SBP, ß estimate, -3.39; 95% CI, -4.79 to -2.00; P = 2.33 × 10-6; PTGDS: exercise DBP ß estimate, -2.50; 95% CI, -3.29 to -1.70; P = 1.18 × 10-9). In fully adjusted models, TGFBR3 was inversely associated with incident hypertension in FHS, JHS, and MESA (hazard ratio [HR]: FHS, 0.86; 95% CI, 0.75-0.97; P = .01; JHS, 0.87; 95% CI, 0.77-0.97; P = .02; MESA, 0.84; 95% CI, 0.71-0.98; P = .03; pooled cohort, 0.86; 95% CI, 0.79-0.92; P = 6 × 10-5). Using cis-MR, genetically predicted levels of TGFBR3 were associated with SBP, hypertension, and CVD events (SBP: ß, -0.38; 95% CI, -0.64 to -0.11; P = .006; hypertension: odds ratio [OR], 0.99; 95% CI, 0.98-0.99; P < .001; heart failure with hypertension: OR, 0.86; 95% CI, 0.77-0.97; P = .01; CVD: OR, 0.84; 95% CI, 0.77-0.92; P = 8 × 10-5; cerebrovascular events: OR, 0.77; 95% CI, 0.70-0.85; P = 5 × 10-7). Conclusions and Relevance: Plasma proteomic profiling of EBP identified a novel protein, TGFBR3, which may protect against elevated BP and long-term CVD outcomes.


Sujet(s)
Pression sanguine , Exercice physique , Hypertension artérielle , Protéomique , Humains , Hypertension artérielle/épidémiologie , Hypertension artérielle/sang , Femelle , Mâle , Pression sanguine/physiologie , Adulte d'âge moyen , Exercice physique/physiologie , Marqueurs biologiques/sang , Adulte , Incidence , Épreuve d'effort , Protéines du sang/métabolisme , Sujet âgé
10.
Nat Aging ; 4(8): 1064-1075, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-38802582

RÉSUMÉ

As there are effective treatments to reduce hip fractures, identification of patients at high risk of hip fracture is important to inform efficient intervention strategies. To obtain a new tool for hip fracture prediction, we developed a protein-based risk score in the Cardiovascular Health Study using an aptamer-based proteomic platform. The proteomic risk score predicted incident hip fractures and improved hip fracture discrimination in two Trøndelag Health Study validation cohorts using the same aptamer-based platform. When transferred to an antibody-based proteomic platform in a UK Biobank validation cohort, the proteomic risk score was strongly associated with hip fractures (hazard ratio per s.d. increase, 1.64; 95% confidence interval 1.53-1.77). The proteomic risk score, but not available polygenic risk scores for fractures or bone mineral density, improved the C-index beyond the fracture risk assessment tool (FRAX), which integrates information from clinical risk factors (C-index, FRAX 0.735 versus FRAX + proteomic risk score 0.776). The developed proteomic risk score constitutes a new tool for stratifying patients according to hip fracture risk; however, its improvement in hip fracture discrimination is modest and its clinical utility beyond FRAX with information on femoral neck bone mineral density remains to be determined.


Sujet(s)
Protéines du sang , Fractures de la hanche , Protéomique , Humains , Fractures de la hanche/sang , Fractures de la hanche/épidémiologie , Femelle , Mâle , Appréciation des risques/méthodes , Protéomique/méthodes , Sujet âgé , Facteurs de risque , Protéines du sang/métabolisme , Protéines du sang/analyse , Adulte d'âge moyen , Densité osseuse
11.
Circ Heart Fail ; 17(5): e011366, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38742409

RÉSUMÉ

BACKGROUND: Although heart failure with preserved ejection fraction (HFpEF) has become the predominant heart failure subtype, it remains clinically under-recognized. HFpEF diagnosis is particularly challenging in the setting of obesity given the limitations of natriuretic peptides and resting echocardiography. We examined invasive and noninvasive HFpEF diagnostic criteria among individuals with obesity and dyspnea without known cardiovascular disease to determine the prevalence of hemodynamic HFpEF in the community. METHODS: Research volunteers with dyspnea and obesity underwent resting echocardiography; participants with possible pulmonary hypertension qualified for invasive cardiopulmonary exercise testing. HFpEF was defined using rest or exercise pulmonary capillary wedge pressure criteria (≥15 mm Hg or Δpulmonary capillary wedge pressure/Δcardiac output slope, >2.0 mm Hg·L-1·min-1). RESULTS: Among n=78 participants (age, 53±13 years; 65% women; body mass index, 37.3±6.8 kg/m2), 40 (51%) met echocardiographic criteria to undergo invasive cardiopulmonary exercise testing. In total, 24 participants (60% among the cardiopulmonary exercise testing group, 31% among the total sample) were diagnosed with HFpEF by rest or exercise pulmonary capillary wedge pressure (n=12) or exercise criteria (n=12). There were no differences in NT-proBNP (N-terminal pro-B-type natriuretic peptide; 79 [62-104] versus 73 [57-121] pg/mL) or resting echocardiography (mitral E/e' ratio, 9.1±3.1 versus 8.0±2.7) among those with versus without HFpEF (P>0.05 for all). Distributions of HFpEF diagnostic scores were similar, with the majority classified as intermediate risk (100% versus 93.75% [H2FPEF] and 87.5% versus 68.75% [HFA-PEFF (Heart Failure Association Pretest assessment, echocardiography and natriuretic peptide, functional testing, and final etiology)] in those with versus without HFpEF). CONCLUSIONS: Among adults with obesity and dyspnea without known cardiovascular disease, at least a third had clinically unrecognized HFpEF uncovered on invasive cardiopulmonary exercise testing. Clinical, biomarker, resting echocardiography, and diagnostic scores were similar among those with and without HFpEF. These results suggest clinical underdiagnosis of HFpEF among individuals with obesity and dyspnea and highlight limitations of noninvasive testing in the identification of HFpEF.


Sujet(s)
Dyspnée , Épreuve d'effort , Défaillance cardiaque , Obésité , Débit systolique , Humains , Femelle , Défaillance cardiaque/physiopathologie , Défaillance cardiaque/diagnostic , Mâle , Adulte d'âge moyen , Débit systolique/physiologie , Dyspnée/physiopathologie , Obésité/physiopathologie , Obésité/complications , Obésité/épidémiologie , Obésité/diagnostic , Sujet âgé , Échocardiographie , Adulte , Peptide natriurétique cérébral/sang , Fragments peptidiques/sang , Pression artérielle pulmonaire d'occlusion/physiologie , Fonction ventriculaire gauche/physiologie , Marqueurs biologiques/sang , Prévalence
12.
HGG Adv ; 5(3): 100304, 2024 Jul 18.
Article de Anglais | MEDLINE | ID: mdl-38720460

RÉSUMÉ

Genetic correlation refers to the correlation between genetic determinants of a pair of traits. When using individual-level data, it is typically estimated based on a bivariate model specification where the correlation between the two variables is identifiable and can be estimated from a covariance model that incorporates the genetic relationship between individuals, e.g., using a pre-specified kinship matrix. Inference relying on asymptotic normality of the genetic correlation parameter estimates may be inaccurate when the sample size is low, when the genetic correlation is close to the boundary of the parameter space, and when the heritability of at least one of the traits is low. We address this problem by developing a parametric bootstrap procedure to construct confidence intervals for genetic correlation estimates. The procedure simulates paired traits under a range of heritability and genetic correlation parameters, and it uses the population structure encapsulated by the kinship matrix. Heritabilities and genetic correlations are estimated using the close-form, method of moment, Haseman-Elston regression estimators. The proposed parametric bootstrap procedure is especially useful when genetic correlations are computed on pairs of thousands of traits measured on the same exact set of individuals. We demonstrate the parametric bootstrap approach on a proteomics dataset from the Jackson Heart Study.


Sujet(s)
Modèles génétiques , Humains , Cartes d'interactions protéiques/génétique , Intervalles de confiance , Simulation numérique , Algorithmes , Phénotype
13.
Cell ; 187(10): 2359-2374.e18, 2024 May 09.
Article de Anglais | MEDLINE | ID: mdl-38653240

RÉSUMÉ

Brown adipose tissue (BAT) is best known for thermogenesis. Rodent studies demonstrated that enhanced BAT thermogenesis is tightly associated with increased energy expenditure, reduced body weight, and improved glucose homeostasis. However, human BAT is protective against type 2 diabetes, independent of body weight. The mechanism underlying this dissociation remains unclear. Here, we report that impaired mitochondrial catabolism of branched-chain amino acids (BCAAs) in BAT, by deleting mitochondrial BCAA carriers (MBCs), caused systemic insulin resistance without affecting energy expenditure and body weight. Brown adipocytes catabolized BCAA in the mitochondria as nitrogen donors for the biosynthesis of non-essential amino acids and glutathione. Impaired mitochondrial BCAA-nitrogen flux in BAT resulted in increased oxidative stress, decreased hepatic insulin signaling, and decreased circulating BCAA-derived metabolites. A high-fat diet attenuated BCAA-nitrogen flux and metabolite synthesis in BAT, whereas cold-activated BAT enhanced the synthesis. This work uncovers a metabolite-mediated pathway through which BAT controls metabolic health beyond thermogenesis.


Sujet(s)
Tissu adipeux brun , Acides aminés à chaine ramifiée , Insulinorésistance , Mitochondries , Azote , Thermogenèse , Tissu adipeux brun/métabolisme , Animaux , Acides aminés à chaine ramifiée/métabolisme , Souris , Azote/métabolisme , Mitochondries/métabolisme , Mâle , Humains , Métabolisme énergétique , Souris de lignée C57BL , Stress oxydatif , Insuline/métabolisme , Alimentation riche en graisse , Adipocytes bruns/métabolisme , Transduction du signal
15.
Sci Rep ; 14(1): 8933, 2024 04 18.
Article de Anglais | MEDLINE | ID: mdl-38637659

RÉSUMÉ

Plasma metabolomics holds potential for precision medicine, but limited information is available to compare the performance of such methods across multiple cohorts. We compared plasma metabolite profiles after an overnight fast in 11,309 participants of five population-based Swedish cohorts (50-80 years, 52% women). Metabolite profiles were uniformly generated at a core laboratory (Metabolon Inc.) with untargeted liquid chromatography mass spectrometry and a comprehensive reference library. Analysis of a second sample obtained one year later was conducted in a subset. Of 1629 detected metabolites, 1074 (66%) were detected in all cohorts while only 10% were unique to one cohort, most of which were xenobiotics or uncharacterized. The major classes were lipids (28%), xenobiotics (22%), amino acids (14%), and uncharacterized (19%). The most abundant plasma metabolome components were the major dietary fatty acids and amino acids, glucose, lactate and creatinine. Most metabolites displayed a log-normal distribution. Temporal variability was generally similar to clinical chemistry analytes but more pronounced for xenobiotics. Extensive metabolite-metabolite correlations were observed but mainly restricted to within each class. Metabolites were broadly associated with clinical factors, particularly body mass index, sex and renal function. Collectively, our findings inform the conduct and interpretation of metabolite association and precision medicine studies.


Sujet(s)
Métabolome , Métabolomique , Humains , Femelle , Mâle , Métabolomique/méthodes , Plasma sanguin/métabolisme , Acides aminés/métabolisme , Suède
16.
J Appl Physiol (1985) ; 137(3): 473-493, 2024 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-38634503

RÉSUMÉ

Physical activity, including structured exercise, is associated with favorable health-related chronic disease outcomes. Although there is evidence of various molecular pathways that affect these responses, a comprehensive molecular map of these molecular responses to exercise has not been developed. The Molecular Transducers of Physical Activity Consortium (MoTrPAC) is a multicenter study designed to isolate the effects of structured exercise training on the molecular mechanisms underlying the health benefits of exercise and physical activity. MoTrPAC contains both a preclinical and human component. The details of the human studies component of MoTrPAC that include the design and methods are presented here. The human studies contain both an adult and pediatric component. In the adult component, sedentary participants are randomized to 12 wk of Control, Endurance Exercise Training, or Resistance Exercise Training with outcomes measures completed before and following the 12 wk. The adult component also includes recruitment of highly active endurance-trained or resistance-trained participants who only complete measures once. A similar design is used for the pediatric component; however, only endurance exercise is examined. Phenotyping measures include weight, body composition, vital signs, cardiorespiratory fitness, muscular strength, physical activity and diet, and other questionnaires. Participants also complete an acute rest period (adults only) or exercise session (adults, pediatrics) with collection of biospecimens (blood only for pediatrics) to allow for examination of the molecular responses. The design and methods of MoTrPAC may inform other studies. Moreover, MoTrPAC will provide a repository of data that can be used broadly across the scientific community.NEW & NOTEWORTHY The Molecular Transducers of Physical Activity Consortium (MoTrPAC) will be the first large trial to isolate the effects of structured exercise training on the molecular mechanisms underlying the health benefits of exercise and physical activity. By generating a compendium of the molecular responses to exercise, MoTrPAC will lay the foundation for a new era of biomedical research on Precision Exercise Medicine. Presented here is the design, protocols, and procedures for the MoTrPAC human studies.


Sujet(s)
Exercice physique , Entraînement en résistance , Humains , Exercice physique/physiologie , Adulte , Entraînement en résistance/méthodes , Enfant , Mâle , Femelle , Adolescent , Plan de recherche , Capacité cardiorespiratoire/physiologie , Force musculaire/physiologie , Composition corporelle/physiologie , Jeune adulte , Entrainement d'endurance/méthodes
17.
Circ Res ; 135(1): 138-154, 2024 Jun 21.
Article de Anglais | MEDLINE | ID: mdl-38662804

RÉSUMÉ

BACKGROUND: The biological mechanisms linking environmental exposures with cardiovascular disease pathobiology are incompletely understood. We sought to identify circulating proteomic signatures of environmental exposures and examine their associations with cardiometabolic and respiratory disease in observational cohort studies. METHODS: We tested the relations of >6500 circulating proteins with 29 environmental exposures across the built environment, green space, air pollution, temperature, and social vulnerability indicators in ≈3000 participants of the CARDIA study (Coronary Artery Risk Development in Young Adults) across 4 centers using penalized and ordinary linear regression. In >3500 participants from FHS (Framingham Heart Study) and JHS (Jackson Heart Study), we evaluated the prospective relations of proteomic signatures of the envirome with cardiovascular disease and mortality using Cox models. RESULTS: Proteomic signatures of the envirome identified novel/established cardiovascular disease-relevant pathways including DNA damage, fibrosis, inflammation, and mitochondrial function. The proteomic signatures of the envirome were broadly related to cardiometabolic disease and respiratory phenotypes (eg, body mass index, lipids, and left ventricular mass) in CARDIA, with replication in FHS/JHS. A proteomic signature of social vulnerability was associated with a composite of cardiovascular disease/mortality (1428 events; FHS: hazard ratio, 1.16 [95% CI, 1.08-1.24]; P=1.77×10-5; JHS: hazard ratio, 1.25 [95% CI, 1.14-1.38]; P=6.38×10-6; hazard ratio expressed as per 1 SD increase in proteomic signature), robust to adjustment for known clinical risk factors. CONCLUSIONS: Environmental exposures are related to an inflammatory-metabolic proteome, which identifies individuals with cardiometabolic disease and respiratory phenotypes and outcomes. Future work examining the dynamic impact of the environment on human cardiometabolic health is warranted.


Sujet(s)
Facteurs de risque cardiométabolique , Maladies cardiovasculaires , Exposition environnementale , Protéomique , Humains , Protéomique/méthodes , Femelle , Mâle , Exposition environnementale/effets indésirables , Adulte , Adulte d'âge moyen , Maladies cardiovasculaires/sang , Maladies cardiovasculaires/étiologie , Maladies cardiovasculaires/épidémiologie , Études prospectives , Jeune adulte
18.
Nat Metab ; 6(4): 659-669, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38499766

RÉSUMÉ

Metformin is a widely prescribed anti-diabetic medicine that also reduces body weight. There is ongoing debate about the mechanisms that mediate metformin's effects on energy balance. Here, we show that metformin is a powerful pharmacological inducer of the anorexigenic metabolite N-lactoyl-phenylalanine (Lac-Phe) in cells, in mice and two independent human cohorts. Metformin drives Lac-Phe biosynthesis through the inhibition of complex I, increased glycolytic flux and intracellular lactate mass action. Intestinal epithelial CNDP2+ cells, not macrophages, are the principal in vivo source of basal and metformin-inducible Lac-Phe. Genetic ablation of Lac-Phe biosynthesis in male mice renders animals resistant to the effects of metformin on food intake and body weight. Lastly, mediation analyses support a role for Lac-Phe as a downstream effector of metformin's effects on body mass index in participants of a large population-based observational cohort, the Multi-Ethnic Study of Atherosclerosis. Together, these data establish Lac-Phe as a critical mediator of the body weight-lowering effects of metformin.


Sujet(s)
Poids , Consommation alimentaire , Metformine , Metformine/pharmacologie , Animaux , Humains , Poids/effets des médicaments et des substances chimiques , Souris , Consommation alimentaire/effets des médicaments et des substances chimiques , Mâle , Hypoglycémiants/pharmacologie , Hypoglycémiants/usage thérapeutique , Phénylalanine/pharmacologie , Phénylalanine/métabolisme , Dipeptides/pharmacologie
19.
J Bone Miner Res ; 39(2): 139-149, 2024 Mar 22.
Article de Anglais | MEDLINE | ID: mdl-38477735

RÉSUMÉ

Hip fractures are associated with significant disability, high cost, and mortality. However, the exact biological mechanisms underlying susceptibility to hip fractures remain incompletely understood. In an exploratory search of the underlying biology as reflected through the circulating proteome, we performed a comprehensive Circulating Proteome Association Study (CPAS) meta-analysis for incident hip fractures. Analyses included 6430 subjects from two prospective cohort studies (Cardiovascular Health Study and Trøndelag Health Study) with circulating proteomics data (aptamer-based 5 K SomaScan version 4.0 assay; 4979 aptamers). Associations between circulating protein levels and incident hip fractures were estimated for each cohort using age and sex-adjusted Cox regression models. Participants experienced 643 incident hip fractures. Compared with the individual studies, inverse-variance weighted meta-analyses yielded more statistically significant associations, identifying 23 aptamers associated with incident hip fractures (conservative Bonferroni correction 0.05/4979, P < 1.0 × 10-5). The aptamers most strongly associated with hip fracture risk corresponded to two proteins of the growth hormone/insulin growth factor system (GHR and IGFBP2), as well as GDF15 and EGFR. High levels of several inflammation-related proteins (CD14, CXCL12, MMP12, ITIH3) were also associated with increased hip fracture risk. Ingenuity pathway analysis identified reduced LXR/RXR activation and increased acute phase response signaling to be overrepresented among those proteins associated with increased hip fracture risk. These analyses identified several circulating proteins and pathways consistently associated with incident hip fractures. These findings underscore the usefulness of the meta-analytic approach for comprehensive CPAS in a similar manner as has previously been observed for large-scale human genetic studies. Future studies should investigate the underlying biology of these potential novel drug targets.


Hip fractures are associated with significant disability, high cost, and mortality. However, the exact biological mechanisms underlying susceptibility to hip fractures remain incompletely understood. To increase the understanding of the underlying mechanisms, we performed a meta-analysis of the associations between 4860 circulating proteins and risk of fractures using two large cohorts, including 6430 participants with 643 incident hip fractures. We identified 23 proteins/aptamers associated with incident hip fractures. Two proteins of the growth hormone/insulin growth factor system (GHR and IGFBP2), as well as GDF15 and EGFR were most strongly associated with hip fracture risk. High levels of several inflammation-related proteins were also associated with increased hip fracture risk. Pathway analysis identified reduced LXR/RXR activation and increased acute phase response signaling to be overrepresented among those proteins associated with increased hip fracture risk. Future mechanistic studies should investigate the underlying biology of these novel protein biomarkers which may be potential drug targets.


Sujet(s)
Fractures de la hanche , Protéome , Humains , Fractures de la hanche/sang , Fractures de la hanche/épidémiologie , Protéome/métabolisme , Femelle , Mâle , Incidence , Sujet âgé , Protéines du sang/métabolisme , Facteurs de risque
20.
Aging Cell ; 23(6): e14136, 2024 06.
Article de Anglais | MEDLINE | ID: mdl-38440820

RÉSUMÉ

The identification of protein targets that exhibit anti-aging clinical potential could inform interventions to lengthen the human health span. Most previous proteomics research has been focused on chronological age instead of longevity. We leveraged two large population-based prospective cohorts with long follow-ups to evaluate the proteomic signature of longevity defined by survival to 90 years of age. Plasma proteomics was measured using a SOMAscan assay in 3067 participants from the Cardiovascular Health Study (discovery cohort) and 4690 participants from the Age Gene/Environment Susceptibility-Reykjavik Study (replication cohort). Logistic regression identified 211 significant proteins in the CHS cohort using a Bonferroni-adjusted threshold, of which 168 were available in the replication cohort and 105 were replicated (corrected p value <0.05). The most significant proteins were GDF-15 and N-terminal pro-BNP in both cohorts. A parsimonious protein-based prediction model was built using 33 proteins selected by LASSO with 10-fold cross-validation and validated using 27 available proteins in the validation cohort. This protein model outperformed a basic model using traditional factors (demographics, height, weight, and smoking) by improving the AUC from 0.658 to 0.748 in the discovery cohort and from 0.755 to 0.802 in the validation cohort. We also found that the associations of 169 out of 211 proteins were partially mediated by physical and/or cognitive function. These findings could contribute to the identification of biomarkers and pathways of aging and potential therapeutic targets to delay aging and age-related diseases.


Sujet(s)
Longévité , Protéomique , Humains , Longévité/physiologie , Protéomique/méthodes , Femelle , Mâle , Sujet âgé , Sujet âgé de 80 ans ou plus , Adulte d'âge moyen , Études de cohortes , Marqueurs biologiques/sang , Vieillissement/sang
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE