Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Metab Brain Dis ; 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39017968

RÉSUMÉ

Calcitriol as a biologically active form of vitamin D3 has beneficial effects on all body systems. This vitamin has a potent neuroprotective effect via several independent mechanisms against brain insults induced by anticancer drugs. The present study was designed to examine the neuroprotective effects of calcitriol against neurotoxicity induced by cisplatin. Induction of neurotoxicity was done with cisplatin administration (5 mg/kg/week) for 5 successive weeks in male Wistar rats. The neuroprotective influence of calcitriol supplementation (100ng/kg/day for 5 weeks) was assessed through behavioral, electrophysiological, and molecular experiments. Cisplatin administration impaired spatial learning and memory and decreased prefrontal brain-derived neurotrophic factor (BDNF). Peripheral sensory neuropathy was induced through cisplatin administration. Cisplatin also reduced the amplitudes of the compound action potential of sensory nerves in electrophysiological studies. Cisplatin treatment elevated MDA levels and reduced anti-oxidant (SOD and GPx) enzymes. Pro-inflammatory cytokines (IL-1ß and TNF-α) and metalloproteinase-2 and 9 (MMP-2/9) were augmented through treatment with cisplatin. Learning and memory impairments along with BDNF changes caused by cisplatin were amended with calcitriol supplementation. Reduced sensory nerve conduction velocity in the cisplatin-treated group was improved by calcitriol. Calcitriol partially improved redox imbalance and diminished the pro-inflammatory cytokines and MMP-2/9 levels. Our findings showed that calcitriol supplementation can relieve cisplatin-induced peripheral neurotoxicity. Calcitriol can be regarded as a promising new neuroprotective agent.

2.
Int J Dev Neurosci ; 2024 Jul 10.
Article de Anglais | MEDLINE | ID: mdl-38984677

RÉSUMÉ

Serotonin is a monoamine neurotransmitter that plays a main role in regulating physiological and cognitive functions. Serotonergic system dysfunction is involved in the etiology of various psychiatric and neurological disorders. Therefore, the present study was designed to investigate the effects of early-life serotonin depletion on cognitive disorders caused by sleep deprivation. Serotonin was depleted by para-chlorophenylalanine (PCPA, 100 mg/kg, s.c.) at postnatal days 10-20, followed by sleep deprivation-induced through the multiple platform apparatus for 24 h at PND 60. After the examination of the novel object recognition and passive avoidance memories, the hippocampi and prefrontal cortex were dissected to examine the brain-derived neurotrophic factor (BDNF) mRNA expression by PCR. Our findings showed that postnatal serotonin depletion and sleep deprivation impaired the novel object recognition and passive avoidance memories and changed the BDNF levels. In the same way, the serotonin depletion in early life before sleep deprivation exacerbated the harmful effects of sleep deprivation on cognitive function and BDNF levels. It can be claimed that the serotonergic system plays a main role in the modulation of sleep and cognitive functions.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE