Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Proc Natl Acad Sci U S A ; 121(30): e2303642121, 2024 Jul 23.
Article de Anglais | MEDLINE | ID: mdl-39012819

RÉSUMÉ

Glutamyl-prolyl-tRNA synthetase (EPRS1) is a bifunctional aminoacyl-tRNA-synthetase (aaRS) essential for decoding the genetic code. EPRS1 resides, with seven other aaRSs and three noncatalytic proteins, in the cytoplasmic multi-tRNA synthetase complex (MSC). Multiple MSC-resident aaRSs, including EPRS1, exhibit stimulus-dependent release from the MSC to perform noncanonical activities distinct from their primary function in protein synthesis. Here, we show EPRS1 is present in both cytoplasm and nucleus of breast cancer cells with constitutively low phosphatase and tensin homolog (PTEN) expression. EPRS1 is primarily cytosolic in PTEN-expressing cells, but chemical or genetic inhibition of PTEN, or chemical or stress-mediated activation of its target, AKT, induces EPRS1 nuclear localization. Likewise, preferential nuclear localization of EPRS1 was observed in invasive ductal carcinoma that were also P-Ser473-AKT+. EPRS1 nuclear transport requires a nuclear localization signal (NLS) within the linker region that joins the catalytic glutamyl-tRNA synthetase and prolyl-tRNA synthetase domains. Nuclear EPRS1 interacts with poly(ADP-ribose) polymerase 1 (PARP1), a DNA-damage sensor that directs poly(ADP-ribosyl)ation (PARylation) of proteins. EPRS1 is a critical regulator of PARP1 activity as shown by markedly reduced ADP-ribosylation in EPRS1 knockdown cells. Moreover, EPRS1 and PARP1 knockdown comparably alter the expression of multiple tumor-related genes, inhibit DNA-damage repair, reduce tumor cell survival, and diminish tumor sphere formation by breast cancer cells. EPRS1-mediated regulation of PARP1 activity provides a mechanistic link between PTEN loss in breast cancer cells, PARP1 activation, and cell survival and tumor growth. Targeting the noncanonical activity of EPRS1, without inhibiting canonical tRNA ligase activity, provides a therapeutic approach potentially supplementing existing PARP1 inhibitors.


Sujet(s)
Tumeurs du sein , Noyau de la cellule , Poly (ADP-Ribose) polymerase-1 , Protéines proto-oncogènes c-akt , Humains , Tumeurs du sein/métabolisme , Tumeurs du sein/génétique , Tumeurs du sein/anatomopathologie , Femelle , Poly (ADP-Ribose) polymerase-1/métabolisme , Poly (ADP-Ribose) polymerase-1/génétique , Noyau de la cellule/métabolisme , Protéines proto-oncogènes c-akt/métabolisme , Protéines proto-oncogènes c-akt/génétique , Lignée cellulaire tumorale , Phosphohydrolase PTEN/métabolisme , Phosphohydrolase PTEN/génétique , Amino acyl-tRNA synthetases/métabolisme , Amino acyl-tRNA synthetases/génétique , Transport nucléaire actif , Signaux de localisation nucléaire/métabolisme
2.
Neurooncol Adv ; 6(1): vdad154, 2024.
Article de Anglais | MEDLINE | ID: mdl-38239626

RÉSUMÉ

Background: Glioblastoma (GBM) displays alterations in iron that drive proliferation and tumor growth. Iron regulation is complex and involves many regulatory mechanisms, including the homeostatic iron regulator (HFE) gene, which encodes the homeostatic iron regulatory protein. While HFE is upregulated in GBM and correlates with poor survival outcomes, the function of HFE in GBM remains unclear. Methods: We interrogated the impact of cell-intrinsic Hfe expression on proliferation and survival of intracranially implanted animals through genetic gain- and loss-of-function approaches in syngeneic mouse glioma models, along with in vivo immune assessments. We also determined the expression of iron-associated genes and their relationship to survival in GBM using public data sets and used transcriptional profiling to identify differentially expressed pathways in control compared to Hfe-knockdown cells. Results: Overexpression of Hfe accelerated GBM proliferation and reduced animal survival, whereas suppression of Hfe induced apoptotic cell death and extended survival, which was more pronounced in females and associated with attenuation of natural killer cells and CD8+ T cell activity. Analysis of iron gene signatures in Hfe-knockdown cells revealed alterations in the expression of several iron-associated genes, suggesting global disruption of intracellular iron homeostasis. Further analysis of differentially expressed pathways revealed oxidative stress as the top pathway upregulated following Hfe loss. Hfe knockdown indeed resulted in enhanced 55Fe uptake and generation of reactive oxygen species. Conclusions: These findings reveal an essential function for HFE in GBM cell growth and survival, as well as a sex-specific interaction with the immune response.

3.
Nat Commun ; 14(1): 3385, 2023 06 09.
Article de Anglais | MEDLINE | ID: mdl-37296097

RÉSUMÉ

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, generates multiple protein-coding, subgenomic RNAs (sgRNAs) from a longer genomic RNA, all bearing identical termini with poorly understood roles in regulating viral gene expression. Insulin and interferon-gamma, two host-derived, stress-related agents, and virus spike protein, induce binding of glutamyl-prolyl-tRNA synthetase (EPRS1), within an unconventional, tetra-aminoacyl-tRNA synthetase complex, to the sgRNA 3'-end thereby enhancing sgRNA expression. We identify an EPRS1-binding sarbecoviral pan-end activating RNA (SPEAR) element in the 3'-end of viral RNAs driving agonist-induction. Translation of another co-terminal 3'-end feature, ORF10, is necessary for SPEAR-mediated induction, independent of Orf10 protein expression. The SPEAR element enhances viral programmed ribosomal frameshifting, thereby expanding its functionality. By co-opting noncanonical activities of a family of essential host proteins, the virus establishes a post-transcriptional regulon stimulating global viral RNA translation. A SPEAR-targeting strategy markedly reduces SARS-CoV-2 titer, suggesting a pan-sarbecoviral therapeutic modality.


Sujet(s)
ARN viral , Régulon , SARS-CoV-2 , ARN subgénomique , Humains , COVID-19/génétique , Régulon/génétique , ARN viral/génétique , SARS-CoV-2/génétique , SARS-CoV-2/métabolisme , Protéines virales/métabolisme , ARN subgénomique/génétique
4.
Mol Cell Biol ; 39(16)2019 08 15.
Article de Anglais | MEDLINE | ID: mdl-31138664

RÉSUMÉ

Increased ribosomal biogenesis occurs during tissue hypertrophy, but whether ribosomal biogenesis is impaired during atrophy is not known. We show that hyperammonemia, which occurs in diverse chronic disorders, impairs protein synthesis as a result of decreased ribosomal content and translational capacity. Transcriptome analyses, real-time PCR, and immunoblotting showed consistent reductions in the expression of the large and small ribosomal protein subunits (RPL and RPS, respectively) in hyperammonemic murine skeletal myotubes, HEK cells, and skeletal muscle from hyperammonemic rats and human cirrhotics. Decreased ribosomal content was accompanied by decreased expression of cMYC, a positive regulator of ribosomal biogenesis, as well as reduced expression and activity of ß-catenin, a transcriptional activator of cMYC. However, unlike the canonical regulation of ß-catenin via glycogen synthase kinase 3ß (GSK3ß)-dependent degradation, GSK3ß expression and phosphorylation were unaltered during hyperammonemia, and depletion of GSK3ß did not prevent ammonia-induced degradation of ß-catenin. Overexpression of GSK3ß-resistant variants, genetic depletion of IκB kinase ß (IKKß) (activated during hyperammonemia), protein interactions, and in vitro kinase assays showed that IKKß phosphorylated ß-catenin directly. Overexpressing ß-catenin restored hyperammonemia-induced perturbations in signaling responses that regulate ribosomal biogenesis. Our data show that decreased protein synthesis during hyperammonemia is mediated via a novel GSK3ß-independent, IKKß-dependent impairment of the ß-catenin-cMYC axis.


Sujet(s)
Hyperammoniémie/métabolisme , Petite sous-unité du ribosome/génétique , Petite sous-unité du ribosome/métabolisme , bêta-Caténine/composition chimique , bêta-Caténine/génétique , Animaux , Lignée cellulaire , Modèles animaux de maladie humaine , Fibrose , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes , Glycogen synthase kinase 3 beta/génétique , Glycogen synthase kinase 3 beta/métabolisme , Cellules HEK293 , Humains , Hyperammoniémie/génétique , I-kappa B Kinase/génétique , I-kappa B Kinase/métabolisme , Souris , Protéolyse , Protéomique , Protéines proto-oncogènes c-myc/génétique , Protéines proto-oncogènes c-myc/métabolisme , Rats , Analyse de séquence d'ARN , Transduction du signal
5.
Dev Cell ; 16(5): 661-74, 2009 May.
Article de Anglais | MEDLINE | ID: mdl-19460343

RÉSUMÉ

Eukaryotic cell migration proceeds by cycles of protrusion, adhesion, and contraction, regulated by actin polymerization, focal adhesion assembly, and matrix degradation. However, mechanisms coordinating these processes remain largely unknown. Here, we show that local regulation of thymosin-beta4 (Tbeta4) binding to actin monomer (G-actin) coordinates actin polymerization with metalloproteinase synthesis to promote endothelial cell motility. In particular and quite unexpectedly, FRET analysis reveals diminished interaction between Tbeta4 and G-actin at the cell leading edge despite their colocalization there. Profilin-dependent dissociation of G-actin-Tbeta4 complexes simultaneously liberates actin for filament assembly and facilitates Tbeta4 binding to integrin-linked kinase (ILK) in the lamellipodia. Tbeta4-ILK complexes then recruit and activate Akt2, resulting in matrix metalloproteinase-2 production. Thus, the actin-Tbeta4 complex constitutes a latent coordinating center for cell migratory behavior, allowing profilin to initiate a cascade of events at the leading edge that couples actin polymerization to matrix degradation.


Sujet(s)
Actines/métabolisme , Aorte/cytologie , Mouvement cellulaire , Cellules endothéliales/métabolisme , Protein-Serine-Threonine Kinases/métabolisme , Protéines proto-oncogènes c-akt/métabolisme , Animaux , Bovins , Cellules endothéliales/cytologie , Pseudopodes/métabolisme , Thymosine/métabolisme
6.
Dev Cell ; 6(1): 29-41, 2004 Jan.
Article de Anglais | MEDLINE | ID: mdl-14723845

RÉSUMÉ

Cell movement is characterized by anterior-posterior polarization of multiple cell structures. We show here that the plasma membrane is polarized in moving endothelial cells (EC); in particular, plasma membrane microviscosity (PMM) is increased at the cell leading edge. Our studies indicate that cholesterol has an important role in generation of this microviscosity gradient. In vitro studies using synthetic lipid vesicles show that membrane microviscosity has a substantial and biphasic influence on actin dynamics; a small amount of cholesterol increases actin-mediated vesicle deformation, whereas a large amount completely inhibits deformation. Experiments in migrating ECs confirm the important role of PMM on actin dynamics. Angiogenic growth factor-stimulated cells exhibit substantially increased membrane microviscosity at the cell front but, unexpectedly, show decreased rates of actin polymerization. Our results suggest that increased PMM in lamellipodia may permit more productive actin filament and meshwork formation, resulting in enhanced rates of cell movement.


Sujet(s)
Membrane cellulaire/métabolisme , Mouvement cellulaire/physiologie , Polarité de la cellule/physiologie , Cellules endothéliales/métabolisme , Cytosquelette d'actine/effets des médicaments et des substances chimiques , Cytosquelette d'actine/métabolisme , Actines/métabolisme , Animaux , Bovins , Membrane cellulaire/effets des médicaments et des substances chimiques , Membrane cellulaire/ultrastructure , Mouvement cellulaire/effets des médicaments et des substances chimiques , Polarité de la cellule/effets des médicaments et des substances chimiques , Cellules cultivées , Cholestérol/métabolisme , Cellules endothéliales/effets des médicaments et des substances chimiques , Cellules endothéliales/ultrastructure , Facteurs de croissance endothéliale/métabolisme , Facteurs de croissance endothéliale/pharmacologie , Métabolisme lipidique , Polymères/métabolisme , Pseudopodes/effets des médicaments et des substances chimiques , Pseudopodes/métabolisme , Pseudopodes/ultrastructure , Régulation positive/effets des médicaments et des substances chimiques , Régulation positive/physiologie , Viscosité
7.
Nat Cell Biol ; 4(11): 894-900, 2002 Nov.
Article de Anglais | MEDLINE | ID: mdl-12402046

RÉSUMÉ

Endothelial cell (EC) movement is an initiating and rate-limiting event in the neogenesis and repair of blood vessels. Here, we explore the hypothesis that microviscosity of the plasma membrane (PM) is a key physiological regulator of cell movement. Aortic ECs treated with membrane-active agents, such as alpha-tocopherol, cholesterol and lysophospholipids, exhibited a biphasic dependency on membrane microviscosity, in which moderate increases enhanced EC migration, but increases beyond a threshold markedly inhibited migration. Surprisingly, angiogenic growth factors, that is, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), also increased membrane microviscosity, as measured in live cells by fluorescence recovery after photobleaching (FRAP). The localization of Rac to the PM was modified in cells treated with membrane-active agents or growth factors, suggesting a molecular mechanism for how membrane microviscosity influences cell movement. Our data show that angiogenic growth factors, as well as certain lipophilic molecules, regulate cell motility through alterations in membrane properties and the consequent relocalization of critical signalling molecules to membranes.


Sujet(s)
Aorte/cytologie , Membrane cellulaire/métabolisme , Mouvement cellulaire , Endothélium vasculaire/cytologie , Animaux , Anisotropie , Bovins , Cellules cultivées , Cholestérol/pharmacologie , Relation dose-effet des médicaments , Facteur de croissance fibroblastique de type 2/métabolisme , Immunohistochimie , Lysophospholipides/pharmacologie , Microcirculation , Microscopie de fluorescence , Photoblanchiment , Transduction du signal , Facteurs temps , Facteur de croissance endothéliale vasculaire de type A/métabolisme , alpha-Tocophérol/pharmacologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE