Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 124
Filtrer
1.
Clin Nutr ESPEN ; 63: 332-345, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38964655

RÉSUMÉ

BACKGROUND & AIMS: Legumes intake is known to be associated with several health benefits the origins of which is still a matter of debate. This paper addresses a pilot small cohort to probe for metabolic aspects of the interplay between legumes intake, human metabolism and gut microbiota. METHODS: Untargeted nuclear magnetic resonance (NMR) metabolomics of blood plasma and fecal extracts was carried out, in tandem with qPCR analysis of feces, to assess the impact of an 8-week pilot legumes diet intervention on the fecal and plasma metabolomes and gut microbiota of 19 subjects. RESULTS: While the high inter-individual variability hindered the detection of statistically significant changes in the gut microbiome, increased fecal glucose and decreased threonine levels were noted. Correlation analysis between the microbiome and fecal metabolome lead to putative hypotheses regarding the metabolic activities of prevalent bacteria groups (Clostridium leptum subgroup, Roseburia spp., and Faecalibacterium prausnitzii). These included elevated fecal glucose as a preferential energy source, the involvement of valerate/isovalerate and reduced protein degradation in gut microbiota. Plasma metabolomics advanced mannose and betaine as potential markers of legume intake and unveiled a decrease in formate and ketone bodies, the latter suggesting improved energy utilization through legume carbohydrates. Amino acid metabolism was also apparently affected, as suggested by lowered urea, histidine and threonine levels. CONCLUSIONS: Despite the high inter-individual gut microbiome variability characterizing the small cohort addressed, combination of microbiological measurements and untargeted metabolomics unveiled several metabolic effects putatively related to legumes intake. If confirmed in larger cohorts, our findings will support the inclusion of legumes in diets and contribute valuable new insight into the origins of associated health benefits.

2.
Nutr Bull ; 49(2): 235-246, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38655577

RÉSUMÉ

This pilot study aimed to assess the impact of substituting a traditional lunch for a vegetarian legume-based meal on blood and anthropometric parameters in a group of omnivorous adults. A one-group comparison, quasi-experimental dietary intervention was designed. A vegetarian legume-based meal was offered for 8 consecutive weeks (weekdays) to non-vegetarian individuals (n = 26), (28 years [P25 = 20.0, P75 = 35.5]; 21.9 kg/m2 [P25 = 21.3, P75 = 24.8]). Sociodemographic data, health status and lifestyle-related information were recorded. Three-day food records were used to collect food intake at baseline and at the end of the intervention. Anthropometric parameters were recorded and fasting blood analyses were performed following standard procedures. Wilcoxon signed-rank test was used for statistical comparisons. A p-value <0.05 was considered statistically significant. Participants showed a median intake of 79.8 g of cooked legumes per meal, meaning 13 (50.0%) subjects met the Portuguese daily legume intake recommendations during the intervention days. There were no statistically significant differences in anthropometric parameters. Transferrin concentration increased after 8 weeks (+12.5 mg/dL; p = 0.001). Total cholesterol concentration reduced after 8 weeks (-6 mg/dL; p = 0.041), as well as low-density lipoprotein (LDL) cholesterol (-7 mg/dL; p = 0.003). Triglycerides (+9 mg/dL; p = 0.046), fasting glucose (+2 mg/dL; p = 0.037) and HbA1c (+0.1 mg/dL; p = 0.010) concentration increased after the 2-month legume-based trial. Results suggest a cholesterol-lowering potential of legume-rich diets. However, unfavourable results regarding the impact on glucose metabolism-related biomarkers and triglyceride levels were observed. The study's limitations in design and sample size emphasise the importance of conducting further research with larger cohorts to attain more conclusive findings.


Sujet(s)
Fabaceae , Humains , Projets pilotes , Mâle , Femelle , Adulte , Jeune adulte , Régime végétarien , Triglycéride/sang , Anthropométrie , Repas/physiologie , Cholestérol/sang , Glycémie/métabolisme , Glycémie/analyse , Régime alimentaire , Adulte d'âge moyen , Hémoglobine glyquée/analyse , Hémoglobine glyquée/métabolisme , Cholestérol LDL/sang
3.
J Med Chem ; 67(8): 6839-6853, 2024 Apr 25.
Article de Anglais | MEDLINE | ID: mdl-38590144

RÉSUMÉ

Cisplatin (cDDP) resistance is a matter of concern in triple-negative breast cancer therapeutics. We measured the metabolic response of cDDP-sensitive (S) and -resistant (R) MDA-MB-231 cells to Pd2Spermine(Spm) (a possible alternative to cDDP) compared to cDDP to investigate (i) intrinsic response/resistance mechanisms and (ii) the potential cytotoxic role of Pd2Spm. Cell extracts were analyzed by untargeted nuclear magnetic resonance metabolomics, and cell media were analyzed for particular metabolites. CDDP-exposed S cells experienced enhanced antioxidant protection and small deviations in the tricarboxylic acid cycle (TCA), pyrimidine metabolism, and lipid oxidation (proposed cytotoxicity signature). R cells responded more strongly to cDDP, suggesting a resistance signature of activated TCA cycle, altered AMP/ADP/ATP and adenine/uracil fingerprints, and phospholipid biosynthesis (without significant antioxidant protection). Pd2Spm impacted more markedly on R/S cell metabolisms, inducing similarities to cDDP/S cells (probably reflecting high cytotoxicity) and strong additional effects indicative of amino acid depletion, membrane degradation, energy/nucleotide adaptations, and a possible beneficial intracellular γ-aminobutyrate/glutathione-mediated antioxidant mechanism.


Sujet(s)
Antinéoplasiques , Cisplatine , Résistance aux médicaments antinéoplasiques , Tumeurs du sein triple-négatives , Humains , Tumeurs du sein triple-négatives/traitement médicamenteux , Tumeurs du sein triple-négatives/anatomopathologie , Tumeurs du sein triple-négatives/métabolisme , Cisplatine/pharmacologie , Résistance aux médicaments antinéoplasiques/effets des médicaments et des substances chimiques , Antinéoplasiques/pharmacologie , Antinéoplasiques/composition chimique , Lignée cellulaire tumorale , Femelle , Spermine/pharmacologie , Spermine/métabolisme , Palladium/composition chimique , Palladium/pharmacologie
4.
J Agric Food Chem ; 72(1): 894-903, 2024 Jan 10.
Article de Anglais | MEDLINE | ID: mdl-38112332

RÉSUMÉ

Untargeted nuclear magnetic resonance (NMR) metabolomics was used to evaluate compositional changes during yogurt fermentation upon lupin enrichment compared to traditional conditions. Lupin significantly changed the sample metabolic profile and its time course dynamics, seemingly delaying microbial action. The levels of organic and amino acids were significantly altered, along with those of some sugars, nucleotides, and choline compounds. Lupin seemed to favor acetate and formate synthesis, compared to that of citrate and fumarate; a higher formate levels may suggest increased levels of Streptococcus thermophilus action, compared toLactobacillus bulgaricus. Lupin-yogurt was poorer in hippurate, lactose (and hence lactate), galactose, glucose-1-phosphate, and galactose-1-phosphate, containing higher orotate levels (possibly related to increased uridine derivatives), among other differences. Trigonelline was confirmed as a lupin marker, possibly together with glutamate and histidine. Other metabolite trajectories remained unchanged upon lupin addition, unveiling unaffected underlying processes. These results demonstrate the usefulness of untargeted NMR metabolomics to understand/develop new foodstuffs and their production processes, highlighting the identity of a variety of bioactive metabolites with importance for human health.


Sujet(s)
Sucres , Yaourt , Humains , Yaourt/analyse , Fermentation , Spectroscopie par résonance magnétique/méthodes , Métabolomique , Formiates
5.
Cancer Cell Int ; 23(1): 310, 2023 Dec 06.
Article de Anglais | MEDLINE | ID: mdl-38057765

RÉSUMÉ

This work compared the metabolic profile of a parental MDA-MB-231 cisplatin-sensitive triple negative breast cancer (TNBC) cell line with that of a derived cisplatin-resistant line, to characterize inherent metabolic adaptations to resistance, as a means for marker and new TNBC therapies discovery. Supported by cytotoxic, microscopic and biochemical characterization of both lines, Nuclear Magnetic Resonance (NMR) metabolomics was employed to characterize cell polar extracts for the two cell lines, as a function of time (0, 24 and 48 h), and identify statistically relevant differences both between sensitive and resistant cells and their time course behavior. Biochemical results revealed a slight increase in activation of the NF-κB pathway and a marked decrease of the ERK signaling pathway in resistant cells. This was accompanied by lower glycolytic and glutaminolytic activities, possibly linked to glutamine being required to increase stemness capacity and, hence, higher survival to cisplatin. The TCA cycle dynamics seemed to be time-dependent, with an apparent activation at 48 h preferentially supported by anaplerotic aromatic amino acids, leucine and lysine. A distinct behavior of leucine, compared to the other branched-chain-amino-acids, suggested the importance of the recognized relationship between leucine and in mTOR-mediated autophagy to increase resistance. Suggested markers of MDA-MB-231 TNBC cisplatin-resistance included higher phosphocreatine/creatine ratios, hypotaurine/taurine-mediated antioxidant protective mechanisms, a generalized marked depletion in nucleotides/nucleosides, and a distinctive pattern of choline compounds. Although the putative hypotheses generated here require biological demonstration, they pave the way to the use of metabolites as markers of cisplatin-resistance in TNBC and as guidance to develop therapies.

6.
Int J Mol Sci ; 24(24)2023 Dec 16.
Article de Anglais | MEDLINE | ID: mdl-38139388

RÉSUMÉ

This work investigated the mechanisms of action of conventional drugs, cisplatin and oxaliplatin, and the potentially less deleterious drug Pd2Spermine (Spm) and its Pt(II) analog, against osteosarcoma MG-63 cells, using nuclear-magnetic-resonance metabolomics of the cellular lipidome. The Pt(II) chelates induced different responses, namely regarding polyunsaturated-fatty-acids (increased upon cisplatin), suggesting that cisplatin-treated cells have higher membrane fluidity/permeability, thus facilitating cell entry and justifying higher cytotoxicity. Both conventional drugs significantly increased triglyceride levels, while Pt2Spm maintained control levels; this may reflect enhanced apoptotic behavior for conventional drugs, but not for Pt2Spm. Compared to Pt2Spm, the more cytotoxic Pd2Spm (IC50 comparable to cisplatin) induced a distinct phospholipids profile, possibly reflecting enhanced de novo biosynthesis to modulate membrane fluidity and drug-accessibility to cells, similarly to cisplatin. However, Pd2Spm differed from cisplatin in that cells had equivalent (low) levels of triglycerides as Pt2Spm, suggesting the absence/low extent of apoptosis. Our results suggest that Pd2Spm acts on MG-63 cells mainly through adaptation of cell membrane fluidity, whereas cisplatin seems to couple a similar effect with typical signs of apoptosis. These results were discussed in articulation with reported polar metabolome adaptations, building on the insight of these drugs' mechanisms, and particularly of Pd2Spm as a possible cisplatin substitute.


Sujet(s)
Antinéoplasiques , Tumeurs osseuses , Ostéosarcome , Humains , Cisplatine/pharmacologie , Cisplatine/usage thérapeutique , Métabolisme lipidique , Antinéoplasiques/pharmacologie , Antinéoplasiques/usage thérapeutique , Ostéosarcome/traitement médicamenteux , Ostéosarcome/métabolisme , Spermine/métabolisme , Apoptose , Tumeurs osseuses/traitement médicamenteux , Lignée cellulaire tumorale
7.
J Proteome Res ; 2023 Jul 27.
Article de Anglais | MEDLINE | ID: mdl-37497607

RÉSUMÉ

The lipid metabolism adaptations of estrogen and progesterone receptor-positive breast cancer tumors from a mouse syngeneic model are investigated in relation to differences across the transition from hormone-dependent (HD) to hormone-independent (HI) tumor growth and the acquisition of endocrine therapy (ET) resistance (HIR tumors). Results are articulated with reported polar metabolome results to complete a metabolic picture of the above transitions and suggest markers of tumor progression and aggressiveness. Untargeted nuclear magnetic resonance metabolomics was used to analyze tumor and mammary tissue lipid extracts. Tumor progression (HD-HI-HIR) was accompanied by increased nonesterified cholesterol forms and phospholipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelins, and plasmalogens) and decreased relative contents of triglycerides and fatty acids. Predominating fatty acids became shorter and more saturated on average. These results were consistent with gradually more activated cholesterol synthesis, ß-oxidation, and phospholipid biosynthesis to sustain tumor growth, as well as an increase in cholesterol (possibly oxysterol) forms. Particular compound levels and ratios were identified as potential endocrine tumor HD-HI-HIR progression markers, supporting new hypotheses to explain acquired ET resistance.

8.
Int J Mol Sci ; 24(11)2023 May 30.
Article de Anglais | MEDLINE | ID: mdl-37298436

RÉSUMÉ

This paper reports on an NMR metabolomics study of lipophilic extracts of Ruditapes philippinarum clams exposed to the hormonal contaminant 17-α-ethinylestradiol (EE2), at 17 °C and 21 °C. The results reveal that exposure at 17 °C triggers a weak response at low EE2 concentrations, suggestive of a slight increase in membrane rigidity, followed by lipid metabolic stability at higher EE2 concentrations. On the other hand, at 21 °C, lipid metabolism begins to respond at 125 ng/L EE2, with antioxidant docosahexaenoic acid (DHA) helping to tackle high-oxidative-stress conditions, in tandem with enhanced storage of triglycerides. Exposure to 625 ng/L EE2 (highest concentration) enhances phosphatidylcholine (PtdCho) and polyunsaturated fatty acid (PUFA) levels, their direct intercorrelation suggesting PUFA incorporation in new membrane phospholipids. This should lead to increased membrane fluidity, probably aided by a decrease in cholesterol. PUFA levels, considered a measure of membrane fluidity, were strongly (and positively) correlated to intracellular glycine levels, thus identifying glycine as the main osmolyte entering the cells under high stress. Membrane fluidity also seems to elicit the loss of taurine. This work contributes to the understanding of the mechanisms of response of R. philippinarum clams to EE2 in tandem with warming while unveiling novel potential markers of stress mitigation, namely high levels of PtdCho, PUFAs (or PtdCho/glycerophosphocholine and PtdCho/acetylcholine ratios) and linoleic acid and low PUFA/glycine ratios.


Sujet(s)
Bivalvia , Polluants chimiques de l'eau , Animaux , Métabolisme lipidique , Bivalvia/physiologie , Antioxydants/métabolisme , Oxydoréduction , Phospholipides/métabolisme , Polluants chimiques de l'eau/métabolisme
9.
Nutr Bull ; 48(2): 190-202, 2023 06.
Article de Anglais | MEDLINE | ID: mdl-37070278

RÉSUMÉ

Adopting eco-friendly diets will demand the consumption of more plant-based protein food sources such as legumes. However, assessing the impact of such a dietary shift on the dietary and nutritional intake of traditionally omnivorous populations is needed. The objective of this study was to assess the impact of substituting a traditional omnivorous-based lunch for a vegetarian, legume-based meal on the daily dietary and nutritional intake in a group of omnivorous adults in the city of Porto, Portugal. Nineteen, non-vegetarian, healthy young adults consumed a vegetarian, legume-based meal from Monday to Friday, for 8 consecutive weeks. Socio-demographic data, health status, lifestyle-related information and anthropometric parameters were recorded. Three-day food records were used to collect food intake at baseline and week 8. European Food Safety Authority and World Health Organization reference values were used to assess nutritional inadequacies. Variables were described as medians (P25 and P75 ). Wilcoxon signed-rank and Mann-Whitney tests were used for statistical comparisons. A p-value of <0.05 was considered statistically significant. Participants consumed 38.0 (P25 = 35.0; P75 = 40.0) meals, resulting in an intake of 84.5 g (P25 = 74.9; P75 = 98.4) of cooked legumes per meal, meaning 11 subjects (57.9%) met the Portuguese guidelines for legume consumption (≥80 g/day of legumes). The current dietary intervention did not seem to aggravate the prevalence of nutritional inadequacies for the macro- and micronutrients tested, except for the case of vitamin B12 (52.6% [95% CI: 28.9-75.6] vs. 78.9% [95% CI: 54.4-94.0]). This could be linked to the reduction of dietary sources of this vitamin which is an expected consequence of vegetarian meals. Dietary changes towards grain legume-based diets are desirable yet need to be carefully implemented to prevent exacerbating potential nutrient inadequacies, especially of vitamin B12 .


Sujet(s)
Fabaceae , Jeune adulte , Humains , Régime alimentaire , Légumes , Vitamines , Consommation alimentaire , Vitamine B12 , Repas
10.
Sci Total Environ ; 877: 162898, 2023 Jun 15.
Article de Anglais | MEDLINE | ID: mdl-36934939

RÉSUMÉ

Untargeted Nuclear Magnetic Resonance metabolomics was employed to study the effects of warming conditions (17-21 °C) and exposure to 17-α-ethinylestradiol (EE2) on the polar metabolome of Ruditapes philippinarum clams, to identify metabolic markers for monitoring/prediction of deviant environmental conditions. Warming alone triggered changes in alanine/aspartate/glutamate, aromatic amino acids, taurine/hypotaurine and homarine/trigonelline pathways, as well as in energy metabolism, suggesting osmoregulatory adaptations and glycolytic/tricarboxylic acid (TCA) cycle activation, possibly accompanied to some extent by gluconeogenesis to preserve glycogen reserves. At 17 °C, the lowest EE2 concentration (5 ng/L) specifically engaged branched-chain and aromatic amino acids to activate the glycolysis/TCA cycle. Notably, a partial metabolic recovery was observed at 25 ng/L, whereas higher EE2 concentrations (125 and 625 ng/L) again induced significant metabolic disturbances. These included enhanced glycogen biosynthesis and increased lipid reserves, sustained by low-level glutathione-based antioxidative mechanisms that seemed active. At 21 °C, response to EE2 was notably weak at low/intermediate concentrations, becoming particularly significant at the highest EE2 concentration (625 ng/L), suggesting higher protection capacity of Ruditapes philippinarum clams under warming conditions. At 625 ng/L, disturbances in alanine/aspartate/glutamate and taurine/hypotaurine metabolisms were observed, with no evidence of enhanced carbohydrate/protein catabolism. This low energy function profile was accompanied by marked antioxidative mechanisms and choline compounds modulation for cell membrane protection/repair. These results help monitor clams´ response to temperature rise and EE2 exposure, paving the way for future effective guidance and prediction of environmental damaging effects.


Sujet(s)
Bivalvia , Polluants chimiques de l'eau , Animaux , Température , Acide aspartique , Antioxydants/métabolisme , Taurine/pharmacologie , Bivalvia/métabolisme , Éthinyloestradiol/toxicité , Éthinyloestradiol/métabolisme , Polluants chimiques de l'eau/métabolisme
11.
Cells ; 11(23)2022 Nov 23.
Article de Anglais | MEDLINE | ID: mdl-36497004

RÉSUMÉ

This paper describes an untargeted NMR metabolomics study to identify potential intracellular donor-dependent and donor-independent metabolic markers of proliferation and osteogenic differentiation of human adipose mesenchymal stem cells (hAMSCs). The hAMSCs of two donors with distinct proliferating/osteogenic characteristics were fully characterized regarding their polar endometabolome during proliferation and osteogenesis. An 18-metabolites signature (including changes in alanine, aspartate, proline, tyrosine, ATP, and ADP, among others) was suggested to be potentially descriptive of cell proliferation, independently of the donor. In addition, a set of 11 metabolites was proposed to compose a possible donor-independent signature of osteogenesis, mostly involving changes in taurine, glutathione, methylguanidine, adenosine, inosine, uridine, and creatine/phosphocreatine, choline/phosphocholine and ethanolamine/phosphocholine ratios. The proposed signatures were validated for a third donor, although they require further validation in a larger donor cohort. We believe that this proof of concept paves the way to exploit metabolic markers to monitor (and potentially predict) cell proliferation and the osteogenic ability of different donors.


Sujet(s)
Cellules souches mésenchymateuses , Ostéogenèse , Humains , Phosphoryl-choline/métabolisme , Cellules souches mésenchymateuses/métabolisme , Différenciation cellulaire , Tissu adipeux/métabolisme
12.
Int J Mol Sci ; 23(23)2022 Nov 30.
Article de Anglais | MEDLINE | ID: mdl-36499353

RÉSUMÉ

Up to the present day, studies on the therapeutic properties of camel (Camelus spp.) urine and the detailed characterization of its metabolomic profile are scarce and often unrelated. Information on inter individual variability is noticeably limited, and there is a wide divergence across studies regarding the methods for sample storage, pre-processing, and extract derivatization for metabolomic analysis. Additionally, medium osmolarity is not experimentally adjusted prior to bioactivity assays. In this scenario, the methodological standardization and interdisciplinary approach of such processes will strengthen the interpretation, repeatability, and replicability of the empirical results on the compounds with bioactive properties present in camel urine. Furthermore, sample enlargement would also permit the evaluation of camel urine's intra- and interindividual variability in terms of chemical composition, bioactive effects, and efficacy, while it may also permit researchers to discriminate potential animal-intrinsic and extrinsic conditioning factors. Altogether, the results would help to evaluate the role of camel urine as a natural source for the identification and extraction of specific novel bioactive substances that may deserve isolated chemical and pharmacognostic investigations through preclinical tests to determine their biological activity and the suitability of their safety profile for their potential inclusion in therapeutic formulas for improving human and animal health.


Sujet(s)
Liquides biologiques , Chameaux , Animaux , Humains
13.
Int J Mol Sci ; 23(22)2022 Nov 09.
Article de Anglais | MEDLINE | ID: mdl-36430252

RÉSUMÉ

Cisplatin (cDDP)-based chemotherapy is often limited by severe deleterious effects (nephrotoxicity, hepatotoxicity and neurotoxicity). The polynuclear palladium(II) compound Pd2Spermine (Pd2Spm) has emerged as a potential alternative drug, with favorable pharmacokinetic/pharmacodynamic properties. This paper reports on a Nuclear Magnetic Resonance metabolomics study to (i) characterize the response of mice brain and liver to Pd2Spm, compared to cDDP, and (ii) correlate brain-liver metabolic variations. Multivariate and correlation analysis of the spectra of polar and lipophilic brain and liver extracts from an MDA-MB-231 cell-derived mouse model revealed a stronger impact of Pd2Spm on brain metabolome, compared to cDDP. This was expressed by changes in amino acids, inosine, cholate, pantothenate, fatty acids, phospholipids, among other compounds. Liver was less affected than brain, with cDDP inducing more metabolite changes. Results suggest that neither drug induces neuronal damage or inflammation, and that Pd2Spm seems to lead to enhanced brain anti-inflammatory and antioxidant mechanisms, regulation of brain bioactive metabolite pools and adaptability of cell membrane characteristics. The cDDP appears to induce higher extension of liver damage and an enhanced need for liver regeneration processes. This work demonstrates the usefulness of untargeted metabolomics in evaluating drug impact on multiple organs, while confirming Pd2Spm as a promising replacement of cDDP.


Sujet(s)
Métabolomique , Spermine , Animaux , Souris , Encéphale , Foie , Cisplatine/pharmacologie , Spectroscopie par résonance magnétique
14.
Foods ; 11(21)2022 Oct 29.
Article de Anglais | MEDLINE | ID: mdl-36360041

RÉSUMÉ

Chitosan-genipin (Ch-Ge) films have been proposed for the replacement of sulfur dioxide (SO2) in white wines preservation to circumvent the adverse health consequences caused by SO2 intake. To assess the effects of different-sized Ch-Ge films (25 and 100 cm2) on wine composition compared to SO2-treated and untreated wines, nuclear magnetic resonance metabolomics was applied. Relative to SO2, 100 cm2 films induced significant changes in the levels of organic acids, sugars, amino acids, 5-hydroxymethylfurfural, among other compounds, while 25 cm2 films appeared to induce only small variations. The observed metabolite variations were proposed to arise from the mitigation of fermentative processes, electrostatic interactions between acids and the positively charged films and the promotion of Maillard and Strecker reactions. Qualitative sensory analysis showed that wines maintained overall appropriate sensory characteristics, with 100 cm2 film treated wines showing slightly higher attributes. Based on these results, the possibility of using Ch-Ge films as a replacement for SO2 treatment is discussed.

15.
Front Mol Biosci ; 9: 937865, 2022.
Article de Anglais | MEDLINE | ID: mdl-36090050

RÉSUMÉ

Untargeted Nuclear Magnetic Resonance (NMR) metabolomics of polar extracts from the pancreata of a caerulin-induced mouse model of pancreatitis (Pt) and of a transgenic mouse model of pancreatic cancer (PCa) were used to find metabolic markers of Pt and to characterize the metabolic changes accompanying PCa progression. Using multivariate analysis a 10-metabolite metabolic signature specific to Pt tissue was found to distinguish the benign condition from both normal tissue and precancerous tissue (low grade pancreatic intraepithelial neoplasia, PanIN, lesions). The mice pancreata showed significant changes in the progression from normal tissue, through low-grade and high-grade PanIN lesions to pancreatic ductal adenocarcinoma (PDA). These included increased lactate production, amino acid changes consistent with enhanced anaplerosis, decreased concentrations of intermediates in membrane biosynthesis (phosphocholine and phosphoethanolamine) and decreased glycosylated uridine phosphates, reflecting activation of the hexosamine biosynthesis pathway and protein glycosylation.

16.
Colloids Surf B Biointerfaces ; 216: 112522, 2022 Aug.
Article de Anglais | MEDLINE | ID: mdl-35561635

RÉSUMÉ

Peptide derivatives and, most specifically, their self-assembled supramolecular structures are being considered in the design of novel biofunctional materials. Although the self-assembly of triphenylalanine homopeptides has been found to be more versatile than that of homopeptides containing an even number of residues (i.e. diphenylalanine and tetraphenylalanine), only uncapped triphenylalanine (FFF) and a highly aromatic analog blocked at both the N- and C-termini with fluorenyl-containing groups (Fmoc-FFF-OFm), have been deeply studied before. In this work, we have examined the self-assembly of a triphenylalanine derivative bearing 9-fluorenylmethyloxycarbonyl and benzyl ester end-capping groups at the N- and C-termini, respectively (Fmoc-FFF-OBzl). The antiparallel arrangement clearly dominates in ß-sheets formed by Fmoc-FFF-OBzl, whereas the parallel and antiparallel dispositions are almost isoenergetic in Fmoc-FFF-OFm ß-sheets and the parallel one is slightly favored for FFF. The effects of both the peptide concentration and the medium on the self-assembly process have been examined considering Fmoc-FFF-OBzl solutions in a wide variety of solvent:co-solvent mixtures. In addition, Fmoc-FFF-OBzl supramolecular structures have been compared to those obtained for FFF and Fmoc-FFF-OFm under identical experimental conditions. The strength of π-π stacking interactions involving the end-capping groups plays a crucial role in the nucleation and growth of supramolecular structures, which determines the resulting morphology. Finally, the influence of a non-invasive external stimulus, ultrasounds, on the nucleation and growth of supramolecular structures has been examined. Overall, FFF-based peptides provide a wide range of supramolecular structures that can be of interest in the biotechnological field.


Sujet(s)
Dipeptides , Peptides , Dipeptides/composition chimique , Peptides/composition chimique , Phénylalanine/composition chimique , Solvants
17.
Cells ; 11(8)2022 04 07.
Article de Anglais | MEDLINE | ID: mdl-35455937

RÉSUMÉ

This paper describes, for the first time to our knowledge, a lipidome and exometabolome characterization of osteogenic differentiation for human adipose tissue stem cells (hAMSCs) using nuclear magnetic resonance (NMR) spectroscopy. The holistic nature of NMR enabled the time-course evolution of cholesterol, mono- and polyunsaturated fatty acids (including ω-6 and ω-3 fatty acids), several phospholipids (phosphatidylcholine, phosphatidylethanolamine, sphingomyelins, and plasmalogens), and mono- and triglycerides to be followed. Lipid changes occurred almost exclusively between days 1 and 7, followed by a tendency for lipidome stabilization after day 7. On average, phospholipids and longer and more unsaturated fatty acids increased up to day 7, probably related to plasma membrane fluidity. Articulation of lipidome changes with previously reported polar endometabolome profiling and with exometabolome changes reported here in the same cells, enabled important correlations to be established during hAMSC osteogenic differentiation. Our results supported hypotheses related to the dynamics of membrane remodelling, anti-oxidative mechanisms, protein synthesis, and energy metabolism. Importantly, the observation of specific up-taken or excreted metabolites paves the way for the identification of potential osteoinductive metabolites useful for optimized osteogenic protocols.


Sujet(s)
Cellules souches mésenchymateuses , Ostéogenèse , Différenciation cellulaire , Acides gras insaturés/métabolisme , Humains , Lipidomique , Cellules souches mésenchymateuses/métabolisme , Phospholipides/métabolisme
18.
Front Oncol ; 12: 786931, 2022.
Article de Anglais | MEDLINE | ID: mdl-35299741

RÉSUMÉ

Breast cancer (BC) is the most common type of cancer in women and, in most cases, it is hormone-dependent (HD), thus relying on ovarian hormone activation of intracellular receptors to stimulate tumor growth. Endocrine therapy (ET) aimed at preventing hormone receptor activation is the primary treatment strategy, however, about half of the patients, develop resistance in time. This involves the development of hormone independent tumors that initially are ET-responsive (HI), which may subsequently become resistant (HIR). The mechanisms that promote the conversion of HI to HIR tumors are varied and not completely understood. The aim of this work was to characterize the metabolic adaptations accompanying this conversion through the analysis of the polar metabolomes of tumor tissue and non-compromised mammary gland from mice implanted subcutaneously with HD, HI and HIR tumors from a medroxyprogesterone acetate (MPA)-induced BC mouse model. This was carried out by nuclear magnetic resonance (NMR) spectroscopy of tissue polar extracts and data mining through multivariate and univariate statistical analysis. Initial results unveiled marked changes between global tumor profiles and non-compromised mammary gland tissues, as expected. More importantly, specific metabolic signatures were found to accompany progression from HD, through HI and to HIR tumors, impacting on amino acids, nucleotides, membrane percursors and metabolites related to oxidative stress protection mechanisms. For each transition, sets of polar metabolites are advanced as potential markers of progression, including acquisition of resistance to ET. Putative biochemical interpretation of such signatures are proposed and discussed.

19.
Pharmaceutics ; 14(2)2022 Jan 22.
Article de Anglais | MEDLINE | ID: mdl-35213994

RÉSUMÉ

The new palladium agent Pd2Spermine (Spm) has been reported to exhibit promising cytotoxic properties, while potentially circumventing the known disadvantages associated to cisplatin therapeutics, namely acquired resistance and high toxicity. This work presents a nuclear magnetic resonance (NMR) metabolomics study of brain extracts obtained from healthy mice, to assess the metabolic impacts of the new Pd2Spm complex in comparison to that of cisplatin. The proton NMR spectra of both polar and nonpolar brain extracts were analyzed by multivariate and univariate statistics, unveiling several metabolite variations during the time course of exposition to each drug (1-48 h). The distinct time-course dependence of such changes revealed useful information on the drug-induced dynamics of metabolic disturbances and recovery periods, namely regarding amino acids, nucleotides, fatty acids, and membrane precursors and phospholipids. Putative biochemical explanations were proposed, based on existing pharmacokinetics data and previously reported metabolic responses elicited by the same metal complexes in the liver of the same animals. Generally, results suggest a more effective response of brain metabolism towards the possible detrimental effects of Pd2Spm, with more rapid recovery back to metabolites' control levels and, thus, indicating that the palladium drug may exert a more beneficial role than cDDP in relation to brain toxicity.

20.
J Proteome Res ; 21(3): 654-670, 2022 03 04.
Article de Anglais | MEDLINE | ID: mdl-35061379

RÉSUMÉ

This Article presents, for the first time to our knowledge, an untargeted nuclear magnetic resonance (NMR) metabolomic characterization of the polar intracellular metabolic adaptations of human adipose-derived mesenchymal stem cells during osteogenic differentiation. The use of mesenchymal stem cells (MSCs) for bone regeneration is a promising alternative to conventional bone grafts, and untargeted metabolomics may unveil novel metabolic information on the osteogenic differentiation of MSCs, allowing their behavior to be understood and monitored/guided toward effective therapies. Our results unveiled statistically relevant changes in the levels of just over 30 identified metabolites, illustrating a highly dynamic process with significant variations throughout the whole 21-day period of osteogenic differentiation, mainly involving amino acid metabolism and protein synthesis; energy metabolism and the roles of glycolysis, the tricarboxylic acid cycle, and oxidative phosphorylation; cell membrane metabolism; nucleotide metabolism (including the specific involvement of O-glycosylation intermediates and NAD+); and metabolic players in protective antioxidative mechanisms (such as glutathione and specific amino acids). Different metabolic stages are proposed and are supported by putative biochemical explanations for the metabolite changes observed. This work lays the groundwork for the use of untargeted NMR metabolomics to find potential metabolic markers of osteogenic differentiation efficacy.


Sujet(s)
Cellules souches mésenchymateuses , Ostéogenèse , Différenciation cellulaire , Cellules cultivées , Humains , Spectroscopie par résonance magnétique , Cellules souches mésenchymateuses/métabolisme , Métabolomique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...