Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Eur J Med Chem ; 276: 116691, 2024 Oct 05.
Article de Anglais | MEDLINE | ID: mdl-39089001

RÉSUMÉ

Although substantial advances have been obtained in the pharmacological treatment of cystic fibrosis (CF) with the approval of Kaftrio, a combination of two correctors (VX-661, VX-445) and one potentiator (VX-770), new modulators are still needed to rescue F508del and other CFTR mutants with trafficking defects. We have previously identified PP compounds based on a tricyclic core as correctors with high efficacy in the rescue of F508del-CFTR on native epithelial cells of CF patients, particularly in combination with class 1 correctors (VX-809, VX-661). Compound PP028 was found as a lead candidate for the high rescue of F508del-CFTR and used for mechanistic insight indicating that PP028 behaves as a class 3 corrector, similarly to VX-445. From the exploration of the chemical space around the hit structure, based on iterative cycles of chemical synthesis and functional testing, the class of 6,9-dihydro-5H-pyrrolo [3,2-h]quinazolines with corrector activity was discovered. Within a series of 38 analogues, two derivatives emerged as promising candidates and used for further insight to assess the mechanism of action. Both compounds, decorated with a benzensulfonylamino group at the pyrimidine moiety, were able to generate a dose-dependent increase in CFTR function, particularly in the presence of VX-809. Half-effective concentrations (EC50) were in the single digit micromolar range and decreased in the presence of VX-809 thus indicating a synergistic interaction with class 1 correctors. Synergy was also observed with corr-4a (class 2 corrector) but not with VX-445 and PP028 (class 3 correctors) indicating that the new compounds behave as class 3 correctors. These results suggest that tricyclic pyrrolo-quinazolines interact with CFTR at a site different from that of VX-809 and represent a novel class of CFTR correctors suitable for combinatorial pharmacological treatments for the basic defect in CF.


Sujet(s)
Protéine CFTR , Mucoviscidose , Quinazolines , Mucoviscidose/traitement médicamenteux , Mucoviscidose/métabolisme , Protéine CFTR/métabolisme , Protéine CFTR/génétique , Humains , Quinazolines/pharmacologie , Quinazolines/composition chimique , Quinazolines/synthèse chimique , Relation structure-activité , Relation dose-effet des médicaments , Structure moléculaire , Pyrroles/pharmacologie , Pyrroles/composition chimique , Pyrroles/synthèse chimique , Mutation
2.
ACS Med Chem Lett ; 13(3): 358-364, 2022 Mar 10.
Article de Anglais | MEDLINE | ID: mdl-38239337

RÉSUMÉ

G protein-coupled receptors (GPCRs) are important classes of cell surface receptors involved in multiple physiological functions. Aberrant expression, upregulation, and mutation of GPCR signaling pathways are frequent in many types of cancers, promoting hyperproliferation, angiogenesis, and metastasis. Recent studies showed that alterations of GPCRs are involved in different lymphoma types. Herein, we review the synthetic strategies to obtain GPCR inhibitors, focusing on CXCR4 inhibitors which represent most of the GPCR inhibitors available in the market or under preclinical investigations for these diseases.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE