Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Nat Commun ; 13(1): 312, 2022 01 25.
Article de Anglais | MEDLINE | ID: mdl-35078973

RÉSUMÉ

A fourth of the global seabed sediment volume is buried at depths where temperatures exceed 80 °C, a previously proposed thermal barrier for life in the subsurface. Here, we demonstrate, utilizing an extensive suite of radiotracer experiments, the prevalence of active methanogenic and sulfate-reducing populations in deeply buried marine sediment from the Nankai Trough subduction zone, heated to extreme temperature (up to ~120 °C). The small microbial community subsisted with high potential cell-specific rates of energy metabolism, which approach the rates of active surface sediments and laboratory cultures. Our discovery is in stark contrast to the extremely low metabolic rates otherwise observed in the deep subseafloor. As cells appear to invest most of their energy to repair thermal cell damage in the hot sediment, they are forced to balance delicately between subsistence near the upper temperature limit for life and a rich supply of substrates and energy from thermally driven reactions of the sedimentary organic matter.


Sujet(s)
Bactéries/métabolisme , Radio-isotopes du carbone/métabolisme , Sédiments géologiques/microbiologie , Température élevée , Microbiote , Sulfates/métabolisme , Radio-isotopes du soufre/métabolisme , Bactéries/croissance et développement , Sédiments géologiques/analyse , Sédiments géologiques/composition chimique , Traceurs radioactifs
2.
Proc Natl Acad Sci U S A ; 115(2): 367-372, 2018 01 09.
Article de Anglais | MEDLINE | ID: mdl-29279408

RÉSUMÉ

The degradation of organic matter in the anoxic seabed proceeds through a complex microbial network in which the terminal steps are dominated by oxidation with sulfate or conversion into methane and CO2 The controls on pathway and rate of the degradation process in different geochemical zones remain elusive. Radiotracer techniques were used to perform measurements of sulfate reduction, methanogenesis, and acetate oxidation with unprecedented sensitivity throughout Holocene sediment columns from the Baltic Sea. We found that degradation rates transition continuously from the sulfate to the methane zone, thereby demonstrating that terminal steps do not exert feedback control on upstream hydrolytic and fermentative processes, as previously suspected. Acetate was a key intermediate for carbon mineralization in both zones. However, acetate was not directly converted into methane. Instead, an additional subterminal step converted acetate to CO2 and reducing equivalents, such as H2, which then fed autotrophic reduction of CO2 to methane.


Sujet(s)
Carbone/métabolisme , Composés chimiques organiques/métabolisme , Eau de mer/microbiologie , Microbiologie de l'eau , Acétates/métabolisme , Anaérobiose , Pays baltes , Dioxyde de carbone/métabolisme , Sédiments géologiques/composition chimique , Sédiments géologiques/microbiologie , Hydrogène/métabolisme , Méthane/métabolisme , Océans et mers , Oxydoréduction , Sulfates/métabolisme
3.
Science ; 349(6246): 420-4, 2015 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-26206933

RÉSUMÉ

Microbial life inhabits deeply buried marine sediments, but the extent of this vast ecosystem remains poorly constrained. Here we provide evidence for the existence of microbial communities in ~40° to 60°C sediment associated with lignite coal beds at ~1.5 to 2.5 km below the seafloor in the Pacific Ocean off Japan. Microbial methanogenesis was indicated by the isotopic compositions of methane and carbon dioxide, biomarkers, cultivation data, and gas compositions. Concentrations of indigenous microbial cells below 1.5 km ranged from <10 to ~10(4) cells cm(-3). Peak concentrations occurred in lignite layers, where communities differed markedly from shallower subseafloor communities and instead resembled organotrophic communities in forest soils. This suggests that terrigenous sediments retain indigenous community members tens of millions of years after burial in the seabed.


Sujet(s)
Organismes aquatiques/classification , Archéobactéries/classification , Bactéries/classification , Charbon/microbiologie , Sédiments géologiques/microbiologie , Consortiums microbiens , Eau de mer/microbiologie , Organismes aquatiques/génétique , Organismes aquatiques/métabolisme , Archéobactéries/génétique , Archéobactéries/métabolisme , Bactéries/génétique , Bactéries/métabolisme , Marqueurs biologiques/métabolisme , Dioxyde de carbone/métabolisme , Japon , Méthane/métabolisme , Methanococcus/classification , Methanococcus/génétique , Methanococcus/métabolisme , Methanosarcina barkeri/classification , Methanosarcina barkeri/génétique , Methanosarcina barkeri/métabolisme , Océan Pacifique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...