Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Small ; : e2404249, 2024 Jul 02.
Article de Anglais | MEDLINE | ID: mdl-38953366

RÉSUMÉ

The photoelectrochemical (PEC) method has the potential to be an attractive route for converting and storing solar energy as chemical bonds. In this study, a maximum NH3 production yield of 1.01 g L-1 with a solar-to-ammonia conversion efficiency of 8.17% through the photovoltaic electrocatalytic (PV-EC) nitrate (NO3 -) reduction reaction (NO3 -RR) is achieved, using silicon heterojunction solar cell technology. Additionally, the effect of tuning the operation potential of the PV-EC system and its influence on product selectivity are systematically investigated. By using this unique external resistance tuning approach in the PV-EC system, ammonia production through nitrate reduction performance from 96 to 360 mg L-1 is enhanced, a four-fold increase. Furthermore, the NH3 is extracted as NH4Cl powder using acid stripping, which is essential for storing chemical energy. This work demonstrates the possibility of tuning product selectivity in PV-EC systems, with prospects toward pilot scale on value-added product synthesis.

2.
Adv Sci (Weinh) ; 10(6): e2205612, 2023 Feb.
Article de Anglais | MEDLINE | ID: mdl-36529948

RÉSUMÉ

Photo(electro)catalysis methods have drawn significant attention for efficient, energy-saving, and environmental-friendly organic contaminant degradation in wastewater. However, conventional oxide-based powder photocatalysts are limited to UV-light absorption and are unfavorable in the subsequent postseparation process. In this paper, a large-area crystalline-semiconductor nitride membrane with a distinct nanoporous surface is fabricated, which can be scaled up to a full wafer and easily retrieved after photodegradation. The unique nanoporous surface enhances broadband light absorption, provides abundant reactive sites, and promotes the dye-molecule reaction with adsorbed hydroxyl radicals on the surface. The superior electric contact between the nickel bottom layer and nitride membrane facilitates swift charge carrier transportation. In laboratory tests, the nanostructure membrane can degrade 93% of the dye in 6 h under illumination with a small applied bias (0.5 V vs Ag/AgCl). Furthermore, a 2 inch diameter wafer-scale membrane is deployed in a rooftop test under natural sunlight. The membrane operates stably for seven cycles (over 50 h) with an outstanding dye degradation efficiency (>92%) and satisfied average total organic carbon removal rate (≈50%) in each cycle. This demonstration thus opens the pathway toward the production of nanostructured semiconductor layers for large-scale and practical wastewater treatment using natural sunlight.

3.
ACS Appl Mater Interfaces ; 11(47): 44179-44185, 2019 Nov 27.
Article de Anglais | MEDLINE | ID: mdl-31682399

RÉSUMÉ

In recent days, 2-dimensional (2D) niobium disulfide (NbS2) with near-zero Gibbs free energy and superlative acid electrolyte stability has provoked a great deal of interest toward hydrogen evolution reaction (HER) electrocatalyst due to its active basal and edge sulfur sites. Herein, we developed a single step method for the direct deposition of 2D-NbS2 on high-aspect-ratio topographies of silicon nanowires (NWs) by chemical vapor deposition for the applications in HER electrocatalyst. The resultant 2D-NbS2 electrocatalyst demonstrates the HER overpotential of ∼74 mV vs RHE (reversible hydrogen electrode) @ 1 mA/cm2 under acidic conditions and stable for more than 20 h. More importantly, we developed the Si NWs array based photoelectrochemical water-splitting system with the direct deposition of 2D-NbS2 as HER catalyst. The resultant 2D-NbS2-Si NWs photocathode system demonstrates improved charge transfer characteristics at the Si-NbS2 interfaces that leads to an enhanced turn on potential (from 0.06 to 0.34 V vs RHE) with the current density of -28 mA/cm2 at the 0 V vs RHE. The results evidence the synergistic effect of 2D-NbS2 electrocatalysts that addresses poor surface kinetics of Si toward solar water electrolysis. Our comprehensive studies reveal NbS2 as a new class of photoelectrochemical cocatalyst for efficient solar HER performance by promoting the charge transfer process with prolonged acid stability.

4.
Nanoscale ; 11(5): 2439-2446, 2019 Jan 31.
Article de Anglais | MEDLINE | ID: mdl-30667022

RÉSUMÉ

Conducting an efficient hydrogen evolution reaction (HER) using two-dimensional molybdenum disulphide as electrocatalysts remains a challenging task due to the insufficient active edge sites. In this regard, herein, molybdenum disulphide nanosheets with rich active sulphur sites were vertically grown on the graphene surface via a chemical vapour deposition process. The direct integration of vertically aligned MoS2 nanosheets on graphene forms a van der Waals (vdW) heterojunction, which facilitates a barrier-free charge transport towards the electrolyte as a result of unique and well-matched energy band alignment at the interface. The prospective combination of Ohmic graphene/MoS2 heterostructure and the high electrocatalytic edge activity of sulphur delivers an incredibly and small turn-on potential of 0.14 V vs. RHE in the acid electrolyte solution. Most importantly, the use of a vertical vdW device architecture exhibits nearly 8× improvement in HER than that of its layered counterpart. Moreover, the HER reaction is highly stable over 50 hours of continuous operation even after 150 days. The combined analysis of our study makes it certain that the graphene/MoS2 heterostructure will be an efficient alternative electrode for low-cost and large-scale electrochemical applications.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...