Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Life Sci ; 337: 122353, 2024 Jan 15.
Article de Anglais | MEDLINE | ID: mdl-38104862

RÉSUMÉ

AIMS: Sepsis-associated encephalopathy (SAE) is a common complication that increases mortality and leads to long-term cognitive impairment in sepsis survivors. However, no specific or effective therapy has been identified for this complication. Piperine is an alkaloid known for its anti-inflammatory, antioxidant, and neuroprotective properties, which are important characteristics for treatment of SAE. The objective of this study was to evaluate the neuroprotective effect of piperine on SAE in C57BL/6 mice that underwent cecum ligation and perforation surgery (CLP). MAIN METHODS: C57BL/6 male mice were randomly assigned to groups that underwent SHAM surgery or CLP. Mice in the CLP group were treated with piperine at doses of 20 or 40 mg/kg for short- (5 days) or long-term (10 days) periods after CLP. KEY FINDINGS: Our results revealed that untreated septic animals exhibited increased concentrations of IL-6, TNF, VEGF, MMP-9, TBARS, and NLRP3, and decreased levels of BDNF, sulfhydryl groups, and catalase in the short term. Additionally, the levels of carbonylated proteins and degenerated neuronal cells were increased at both time points. Furthermore, short-term and visuospatial memories were impaired. Piperine treatment reduced MMP-9 activity in the short term and decreased the levels of carbonylated proteins and degenerated neuronal cells in the long term. It also lowered IL-6 and TBARS levels at both time points evaluated. Moreover, piperine increased short-term catalase and long-term BDNF factor levels and improved memory at both time points. SIGNIFICANCE: In conclusion, our data demonstrate that piperine exerts a neuroprotective effect on SAE in animals that have undergone CLP.


Sujet(s)
Alcaloïdes , Neuroprotecteurs , Encéphalopathie associée au sepsis , Mâle , Souris , Animaux , Encéphalopathie associée au sepsis/complications , Catalase , Matrix metalloproteinase 9 , Neuroprotection , Neuroprotecteurs/pharmacologie , Neuroprotecteurs/usage thérapeutique , Substances réactives à l'acide thiobarbiturique , Facteur neurotrophique dérivé du cerveau , Interleukine-6 , Souris de lignée C57BL , Alcaloïdes/pharmacologie , Alcaloïdes/usage thérapeutique
2.
J Nutr Biochem ; 116: 109315, 2023 06.
Article de Anglais | MEDLINE | ID: mdl-36921735

RÉSUMÉ

Immunometabolic changes in the liver and white adipose tissue caused by high-fat (HF) diet intake may worse metabolic adaptation and protection against pathogens in sepsis. We investigate the effect of chronic HF diet (15 weeks) on mortality and immunometabolic responses in female mice after sepsis induced by cecum ligation and perforation (CLP). At week 14, animals were divided into four groups: sham C diet, sepsis C diet (C-Sp), sham HF diet (HF-Sh) and sepsis HF diet (HF-Sp). The surviving animals were euthanized on the 7th day. The HF diet decreased survival rate (58.3% vs. 76.2% C-Sp group), increased serum cytokine storm (IL-6 [1.41 ×; vs. HF-Sh], IL-1ß [1.37 ×; vs. C-Sp], TNF [1.34 ×; vs. C-Sp and 1.72 ×; vs. HF-Sh], IL-17 [1.44 ×; vs. HF-Sh], IL-10 [1.55 ×; vs. C-Sp and 1.41 ×; HF-Sh]), white adipose tissue inflammation (IL-6 [8.7 ×; vs. C-Sp and 2.4 ×; vs. HF-Sh], TNF [5 ×; vs. C-Sp and 1.7 ×; vs. HF-Sh], IL-17 [1.7 ×; vs. C-Sp], IL-10 [7.4 ×; vs. C-Sp and 1.3 ×; vs. HF-Sh]), and modulated lipid metabolism in septic mice. In the HF-Sp group liver's, we observed hepatomegaly, hydropic degeneration, necrosis, an increase in oxidative stress (reduction of CAT activity [-81.7%; vs. HF-Sh]; increase MDA levels [82.8%; vs. HF-Sh], and hepatic IL-6 [1.9 ×; vs. HF-Sh], and TNF [1.3 × %; vs. HF-Sh]) production. Furthermore, we found a decrease in the total number of inflammatory, mononuclear cells, and in the regenerative processes, and binucleated hepatocytes in a HF-Sp group livers. Our results suggested that the organism under metabolic stress of a HF diet during sepsis may worsen the inflammatory landscape and hepatocellular injury and may harm the liver regenerative process.


Sujet(s)
Interleukine-10 , Sepsie , Femelle , Souris , Animaux , Interleukine-17 , Interleukine-6 , Facteur de nécrose tumorale alpha/métabolisme , Alimentation riche en graisse/effets indésirables , Sepsie/métabolisme , Souris de lignée C57BL
3.
Prostaglandins Other Lipid Mediat ; 159: 106622, 2022 04.
Article de Anglais | MEDLINE | ID: mdl-35091082

RÉSUMÉ

The incidence of cardiovascular diseases and metabolic disorders has increased worldwide. Clinical and experimental research has shown that the consumption of ω-3 FAs can be beneficial to metabolism in several ways, as they can act on metabolic pathways. Our objective was to evaluate the effect of treatment with linseed oil, a vegetable oil rich in alpha-linolenic acid, and EPA and DHA in different proportions (3:1 EPA:DHA, and 1:3 EPA:DHA), on the metabolic disorders induced by a high-fat diet (20 % lipids) in rats for 2 weeks, after 18 weeks of consumption of a high-fat diet. In 18 weeks, the high-fat diet increased blood glucose, systolic blood pressure, triglyceride concentration in the liver and adipose tissue, and impaired insulin sensibility without interfering in the weight of the animals. All treatments were effective in reducing the deposition of hepatic type III collagen, the proportion of ω-6/ω-3 in the liver and WAT (white adipose tissue), the proportion of area/number of adipocytes, and the gene expression of the ACC, FAS, and CPT1 enzymes. In addition, treatment with EPA and DHA reduced blood glucose, serum TNF-α concentration, amount of liver fat, degree of microsteatosis and type I collagen deposition in the liver, deposition of type I and III collagen in TA, gene expression of the transcription factor SREBP-1c, and increased hepatic binucleation. EPA in major proportion was more effective in reducing the area of adipocytes, hepatic triglyceride concentration, PPAR-α expression, and WAT fat weight. DHA in a major proportion reduced the concentration of MCP1 in WAT. LO treatment did not have any isolated effects. We concluded that EPA and DHA were more effective in treating metabolic damage than treatment with LO, leading to a more favorable metabolic profile.


Sujet(s)
Alimentation riche en graisse , Acides gras omega-3 , Tissu adipeux/métabolisme , Animaux , Glycémie/métabolisme , Alimentation riche en graisse/effets indésirables , Acide docosahexaénoïque/métabolisme , Acide docosahexaénoïque/pharmacologie , Acide eicosapentanoïque/métabolisme , Acide eicosapentanoïque/pharmacologie , Acides gras omega-3/métabolisme , Acides gras omega-3/pharmacologie , Huile de lin/pharmacologie , Foie/métabolisme , Souris , Souris de lignée C57BL , Rats , Triglycéride/métabolisme
4.
Nutr Cancer ; 73(3): 523-533, 2021.
Article de Anglais | MEDLINE | ID: mdl-32367766

RÉSUMÉ

Intestinal mucositis (IM) caused by antineoplastic chemotherapy is characterized by an important inflammatory process, which may compromise ongoing treatment. Our study aimed to investigate the effect of Açaí (Euterpe oleracea Martius) on the antioxidant response in BALB/c mice pretreated with Açaí pulp (200 g/kg) for 14 day. A group of animals receiving a single intraperitoneal injection of 5-FU (200 mg/kg) were euthanized on day three (D3) or seven (D7) after administration, the distal jejunum was isolated for the analyses of histology, superoxide dismutase (SOD) and catalase (CAT) enzyme activities, and concentration of total sulfhydryl groups (GSH). Seven days after induction, the intake of Açaí by the IM group almost completely regenerated tissue histology. Notably, SOD activity decreased in the MUC + Açaí group (D3). CAT activity reduced on D3 and D7 in the IM groups and Açaí treatment groups, respectively. No change was observed in the total GSH concentration at the tissue level. Our results demonstrated the protective effect of Açaí pulp components on intestinal damage induced by 5-FU, as well as the ability to control the response to oxidative stress, in order to mobilize defense pathways and promote tissue repair.


Sujet(s)
Euterpe , Inflammation muqueuse , Animaux , Antioxydants , Fluorouracil , Jéjunum , Souris , Souris de lignée BALB C , Inflammation muqueuse/induit chimiquement , Inflammation muqueuse/traitement médicamenteux , Extraits de plantes/pharmacologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE