Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 1 de 1
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Plant Physiol ; 110(3): 765-771, 1996 Mar.
Article de Anglais | MEDLINE | ID: mdl-12226216

RÉSUMÉ

The first enzyme of the lysine degradation pathway in maize (Zea mays L.), lysine-ketoglutarate reductase, condenses lysine and [alpha]-ketoglutarate into saccharopine using NADPH as a cofactor, whereas the second, saccharopine dehydrogenase, converts saccharopine to [alpha]-aminoadipic-[delta]-semialdehyde and glutamic acid using NAD+ or NADP+ as a cofactor. The reductase and dehydrogenase activities are optimal at pH 7.0 and 9.0, respectively. Both enzyme activities, co-purified on diethylaminoethyl-cellulose and gel filtration columns, were detected on nondenaturing polyacrylamide gels as single bands with identical electrophoretic mobilities and share tissue specificity for the endosperm. The highly purified preparation containing the reductase and dehydrogenase activities showed a single polypeptide band of 125 kD on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The native form of the enzyme is a dimer of 260 kD. Limited proteolysis with elastase indicated that lysine-ketoglutarate reductase and saccharopine dehydrogenase from maize endosperm are located in two functionally independent domains of a bifunctional polypeptide.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE