Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 106
Filtrer
1.
Nanomicro Lett ; 16(1): 221, 2024 Jun 17.
Article de Anglais | MEDLINE | ID: mdl-38884840

RÉSUMÉ

Considering the serious electromagnetic wave (EMW) pollution problems and complex application condition, there is a pressing need to amalgamate multiple functionalities within a single substance. However, the effective integration of diverse functions into designed EMW absorption materials still faces the huge challenges. Herein, reduced graphene oxide/carbon foams (RGO/CFs) with two-dimensional/three-dimensional (2D/3D) van der Waals (vdWs) heterostructures were meticulously engineered and synthesized utilizing an efficient methodology involving freeze-drying, immersing absorption, secondary freeze-drying, followed by carbonization treatment. Thanks to their excellent linkage effect of amplified dielectric loss and optimized impedance matching, the designed 2D/3D RGO/CFs vdWs heterostructures demonstrated commendable EMW absorption performances, achieving a broad absorption bandwidth of 6.2 GHz and a reflection loss of - 50.58 dB with the low matching thicknesses. Furthermore, the obtained 2D/3D RGO/CFs vdWs heterostructures also displayed the significant radar stealth properties, good corrosion resistance performances as well as outstanding thermal insulation capabilities, displaying the great potential in complex and variable environments. Accordingly, this work not only demonstrated a straightforward method for fabricating 2D/3D vdWs heterostructures, but also outlined a powerful mixed-dimensional assembly strategy for engineering multifunctional foams for electromagnetic protection, aerospace and other complex conditions.

2.
Small ; : e2311312, 2024 Apr 02.
Article de Anglais | MEDLINE | ID: mdl-38566552

RÉSUMÉ

The exploitation of multicomponent composites (MCCs) has become the main pathway for obtaining advanced microwave absorption materials (MAMs). Herein, a metal valence state modulation strategy is proposed to tune the electromagnetic (EM) parameters and improve microwave absorption performances. Core@shell hollow carbon microspheres@MoSe2 and hollow carbon microspheres@MoSe2/MoOx MCCs with various mixed-valence states content are well-designed and produced by a simple hydrothermal reaction or/and heat treatment process. The results reveal that the thermal treatment of hollow carbon microspheres@MoSe2 in Ar and Ar/H2 leads to the in situ formation of MoOx and multivalence state, respectively, and the enhanced content of Mo4+ in the designed MCCs greatly boosts their impedance matching characteristics, polarization, and conduction loss capacities, which lead to their evidently improved EM wave absorption properties. Amongst, the as-prepared hollow carbon microspheres@MoSe2/MoOx MCCs achieve an effective absorption bandwidth of 5.80 GHz under a matching thickness of 1.97 mm and minimum reflection loss of -21.49 dB. Therefore, this work offers a simple and universal method to fabricate core@shell hollow carbon microspheres@MoSe2/MoOx MCCs, and a novel and feasible metal valence state modulation strategy is proposed to develop high-efficiency MAMs.

3.
Adv Sci (Weinh) ; 11(25): e2401345, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38647436

RÉSUMÉ

The development of semiconducting polymers with good processability in green solvents and competitive electrical performance is essential for realizing sustainable large-scale manufacturing and commercialization of organic electronics. A major obstacle is the processability-performance dichotomy that is dictated by the lack of ideal building blocks with balanced polarity, solubility, electronic structures, and molecular conformation. Herein, through the integration of donor, quinoid and acceptor units, an unprecedented building block, namely TQBT, is introduced for constructing a serial of conjugated polymers. The TQBT, distinct in non-symmetric structure and high dipole moment, imparts enhanced solubility in anisole-a green solvent-to the polymer TQBT-T. Furthermore, PTQBT-T possess a highly rigid and planar backbone owing to the nearly coplanar geometry and quinoidal nature of TQBT, resulting in strong aggregation in solution and localized aggregates in film. Remarkably, PTQBT-T films spuncast from anisole exhibit a hole mobility of 2.30 cm2 V-1 s-1, which is record high for green solvent-processable semiconducting polymers via spin-coating, together with commendable operational and storage stability. The hybrid building block emerges as a pioneering electroactive unit, shedding light on future design strategies in high-performance semiconducting polymers compatible with green processing and marking a significant stride towards ecofriendly organic electronics.

4.
Cognition ; 246: 105768, 2024 05.
Article de Anglais | MEDLINE | ID: mdl-38479091

RÉSUMÉ

The independent effects of short- and long-term experiences on visual perception have been discussed for decades. However, no study has investigated whether and how these experiences simultaneously affect our visual perception. To address this question, we asked participants to estimate their self-motion directions (i.e., headings) simulated from optic flow, in which a long-term experience learned in everyday life (i.e., straight-forward motion being more common than lateral motion) plays an important role. The headings were selected from three distributions that resembled a peak, a hill, and a flat line, creating different short-term experiences. Importantly, the proportions of headings deviating from the straight-forward motion gradually increased in the peak, hill, and flat distributions, leading to a greater conflict between long- and short-term experiences. The results showed that participants biased their heading estimates towards the straight-ahead direction and previously seen headings, which increased with the growing experience conflict. This suggests that both long- and short-term experiences simultaneously affect visual perception. Finally, we developed two Bayesian models (Model 1 vs. Model 2) based on two assumptions that the experience conflict altered the likelihood distribution of sensory representation or the motor response system. The results showed that both models accurately predicted participants' estimation biases. However, Model 1 predicted a higher variance of serial dependence compared to Model 2, while Model 2 predicted a higher variance of the bias towards the straight-ahead direction compared to Model 1. This suggests that the experience conflict can influence visual perception by affecting both sensory and motor response systems. Taken together, the current study systematically revealed the effects of long- and short-term experiences on visual perception and the underlying Bayesian processing mechanisms.


Sujet(s)
Perception du mouvement , Flux optique , Humains , Perception du mouvement/physiologie , Théorème de Bayes , Perception visuelle/physiologie , Apprentissage
5.
iScience ; 27(4): 109497, 2024 Apr 19.
Article de Anglais | MEDLINE | ID: mdl-38550983

RÉSUMÉ

The development of CRISPR-Cas9 technology introduces an efficient tool for precise engineering of fish genomes. With a short reproduction cycle, zebrafish infection mode can be referenced as antiviral breeding researches in aquaculture fish. Previously we identified a crucian carp-specific gene ftrca1 as an inhibitor of interferon response in vitro. Here, we demonstrate that genome editing of zebrafish ftr42, a homolog of ftrca1, generates a zebrafish mutant (ftr42lof/lof) with an improved resistance to SVCV infection. Zebrafish ftr42 acts as a virus-induced E3 ligase and downregulates IFN antiviral response by facilitating TBK1 protein degradation and also IRF7 mRNA decay. Genome editing results in loss of function of zebrafish ftr42, which enables zebrafish to have enhanced interferon response, thus improving zebrafish survival against virus infection. Our results suggest that fine-tuning fish IFN innate immunity through genome editing of negative regulators can genetically improve viral resistance in fish.

6.
Small ; : e2311978, 2024 Feb 15.
Article de Anglais | MEDLINE | ID: mdl-38361184

RÉSUMÉ

Developing efficient and stable halide perovskite-based photocatalysts for highly selectivity reduction CO2 to valuable fuels remains a significant challenge due to their intrinsic instability. Herein, a novel heterostructure featuring 2D Cs3 Sb2 I9 nanosheets on a 3D flower-like mesoporous NiTiO3 framework using a top-down stepwise membrane fabrication technique is constructed. The unique bilayer heterostructure formed on the 3D mesoporous framework endowed NiTiO3 /Cs3 Sb2 I9 with sufficient and close interface contact, minimizing charge transport distance, and effectively promoting the charge transfer at the interface, thus improving the reaction efficiency of the catalyst surface. As revealed by characterization and calculation, the coupling of Cs3 Sb2 I9 with NiTiO3 facilitates the hydrogenation process during catalytic, directing reaction intermediates toward highly selective CH4 production. Furthermore, the van der Waals forces inherent in the 3D/2D heterostructure with face-to-face contact provide superior stability, ensuring the efficient realization of photocatalytic CO2 reduction to CH4 . Consequently, the optimized 3D/2D NiTiO3 /Cs3 Sb2 I9 heterostructure demonstrates an impressive CH4 yield of 43.4 µmol g-1  h-1 with a selectivity of up to 88.6%, surpassing most reported perovskite-based photocatalysts to date. This investigation contributes to overcoming the challenges of commercializing perovskite-based photocatalysts and paves the way for the development of sustainable and efficient CO2 conversion technologies.

7.
Sci Rep ; 14(1): 1394, 2024 01 16.
Article de Anglais | MEDLINE | ID: mdl-38228771

RÉSUMÉ

Recent studies have found that the estimates of motion directions are biased toward the previous form orientations, showing serial dependence, and the serial dependence does not involve cognitive abilities. In the current study, we conducted two experiments to investigate whether and how attention-a cognitive ability-affected the serial dependence. The results showed that serial dependence was present in the current study, reproducing the previous findings. Importantly, when the attentional load reduced the reliability (i.e., estimation accuracy and precision) of previous form orientations (Experiment 1), the serial dependence decreased, meaning that the biases of motion direction estimates toward previous form orientations were reduced; in contrast, when the attentional load reduced the reliability of current motion directions (Experiment 2), the serial dependence increased, meaning that the biases of motion direction estimates toward previous form orientations were increased. These trends were well consistent with the prediction of the Bayesian inference theory. Therefore, the current study revealed the involvement of attention in the serial dependence of current motion direction estimation on the previous form orientation, demonstrating that the serial dependence was cognitive and the attentional effect can be a Bayesian inference process, initially revealing its computational mechanism.


Sujet(s)
Perception du mouvement , Théorème de Bayes , Reproductibilité des résultats , Attention , Cognition , Perception visuelle
8.
Eur J Cancer ; 199: 113528, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38218157

RÉSUMÉ

BACKGROUND: Extent of resection (EOR) in glioma contributes to longer survival. The purpose of NCT01479686 was to prove whether intraoperative magnetic resonance imaging (iMRI) increases EOR in glioma surgery and benefit survival. METHODS: Patients were randomized (1:1) to receive the iMRI (n = 161) or the conventional neuronavigation (n = 160). The primary endpoint was gross total resection (GTR); secondary outcomes reported were progression-free survival (PFS), overall survival (OS), and safety. RESULTS: 188 high-grade gliomas (HGGs) and 133 low-grade gliomas (LGGs) were enrolled. GTR was 83.85% in the iMRI group vs. 50.00% in the control group (P < 0.0001). In 321 patients, the median PFS (mPFS) was 65.12 months in the iMRI group and 61.01 months in the control group (P = 0.0202). For HGGs, mPFS was improved in the iMRI group (19.32 vs. 13.34 months, P = 0.0015), and a trend of superior OS compared with control was observed (29.73 vs. 25.33 months, P = 0.1233). In the predefined eloquent area HGG subgroup, mPFS, and mOS were 20.47 months and 33.58 months in the iMRI vs. 12.21 months and 21.16 months in the control group (P = 0.0098; P = 0.0375, respectively). From the exploratory analyses of HGGs, residual tumor volume (TV) < 1.0 cm3 decreased the risk of survival (mPFS: 18.99 vs. 9.43 months, P = 0.0055; mOS: 29.77 vs. 18.10 months, P = 0.0042). LGGs with preoperative (pre-OP) TV > 43.1 cm3 and postoperative (post-OP) TV > 4.6 cm3 showed worse OS (P= 0.0117) CONCLUSIONS: It showed that iMRI significantly increased EOR and indicated survival benefits for HGGs, particularly eloquent HGGs. Residual TV in either HGGs or LGGs is a prognostic factor for survival.


Sujet(s)
Tumeurs du cerveau , Gliome , Humains , Tumeurs du cerveau/imagerie diagnostique , Tumeurs du cerveau/chirurgie , Études rétrospectives , Surveillance peropératoire/méthodes , Gliome/imagerie diagnostique , Gliome/chirurgie , Procédures de neurochirurgie/effets indésirables , Procédures de neurochirurgie/méthodes , Imagerie par résonance magnétique/méthodes
9.
Food Chem X ; 21: 101071, 2024 Mar 30.
Article de Anglais | MEDLINE | ID: mdl-38187944

RÉSUMÉ

Hundreds of bamboo shoots have been reported to be edible, but the accumulation of trace elements and hazardous elements in bamboo shoots is poorly understood. Here, 100 bamboo species have been evaluated by screening elements including B, Fe, Mn, Cu, Zn, Cd, Pb and As in bamboo shoots using different assessment systems. Bamboo shoots displayed different morphological characteristics, and large differences were found in the concentration of elements. Most bamboo shoots were rich in Fe and Zn and low concentrations of hazardous elements, but the concentration of Cd and Pb exceeded the maximum permissible limits of tuber vegetables in some bamboo species. Different bamboo shoots were ranked differently in the four assessment systems, and the comprehensive evaluation assigned final scores to all 100 bamboo shoots. This study provides valuable recommendations for selecting high-quality bamboo shoots that are rich in trace elements nutrition while minimizing the potential for hazardous element accumulation.

10.
J Virol ; 98(2): e0180123, 2024 Feb 20.
Article de Anglais | MEDLINE | ID: mdl-38193691

RÉSUMÉ

In mammals, NLRX1 is a unique member of the nucleotide-binding domain and leucine-rich repeat (NLR) family showing an ability to negatively regulate IFN antiviral immunity. Intron-containing genes, including NLRX1, have more than one transcript due to alternative splicing; however, little is known about the function of its splicing variants. Here, we identified a transcript variant of NLRX1 in zebrafish (Danio rerio), termed NLRX1-tv4, as a negative regulator of fish IFN response. Zebrafish NLRX1-tv4 was slightly induced by viral infection, with an expression pattern similar to the full-length NLRX1. Despite the lack of an N-terminal domain that exists in the full-length NLRX1, overexpression of NLRX1-tv4 still impaired fish IFN antiviral response and promoted viral replication in fish cells, similar to the full-length NLRX1. Mechanistically, NLRX1-tv4 targeted STING for proteasome-dependent protein degradation by recruiting an E3 ubiquitin ligase RNF5 to drive the K48-linked ubiquitination, eventually downregulating the IFN antiviral response. Mapping of NLRX1-tv4 domains showed that its N-terminal and C-terminal regions exhibited a similar potential to inhibit STING-mediated IFN antiviral response. Our findings reveal that like the full-length NLRX1, zebrafish NLRX-tv4 functions as an inhibitor to shape fish IFN antiviral response.IMPORTANCEIn this study, we demonstrate that a transcript variant of zebrafish NLRX1, termed NLRX1-tv4, downregulates fish IFN response and promotes virus replication by targeting STING for protein degradation and impairing the interaction of STING and TBK1 and that its N- and C-terminus exhibit a similar inhibitory potential. Our results are helpful in clarifying the current contradictory understanding of structure and function of vertebrate NLRX1s.


Sujet(s)
Protéines membranaires , Protéines mitochondriales , Protéines de poisson-zèbre , Animaux , Immunité innée , Domaines protéiques , Isoformes de protéines/génétique , Ubiquitin-protein ligases , Ubiquitination , Danio zébré/immunologie , Danio zébré/métabolisme , Protéines mitochondriales/métabolisme , Protéines de poisson-zèbre/métabolisme , Protéines membranaires/métabolisme , Interférons/métabolisme
11.
Mater Horiz ; 11(1): 283-296, 2024 Jan 02.
Article de Anglais | MEDLINE | ID: mdl-37943155

RÉSUMÉ

Enhancing the solution-processability of conjugated polymers (CPs) without diminishing their thin-film crystallinity is crucial for optimizing charge transport in organic field-effect transistors (OFETs). However, this presents a classic "Goldilocks zone" dilemma, as conventional solubility-tuning methods for CPs typically yield an inverse correlation between solubility and crystallinity. To address this fundamental issue, a straightforward skeletal randomization strategy is implemented to construct a quinoid-donor conjugated polymer, PA4T-Ra, that contains para-azaquinodimethane (p-AQM) and oligothiophenes as repeat units. A systematic study is conducted to contrast its properties against polymer homologues constructed following conventional solubility-tuning strategies. An unusually concurrent improvement of solubility and crystallinity is realized in the random polymer PA4T-Ra, which shows moderate polymer chain aggregation, the highest crystallinity and the least lattice disorder. Consequently, PA4T-Ra-based OFETs, fabricated under ambient air conditions, deliver an excellent hole mobility of 3.11 cm2 V-1 s-1, which is about 30 times higher than that of the other homologues and ranks among the highest for quinoidal CPs. These findings debunk the prevalent assumption that a random polymer backbone sequence results in decreased crystallinity. The considerable advantages of the skeletal randomization strategy illuminate new possibilities for the control of polymer aggregation and future design of high-performance CPs, potentially accelerating the development and commercialization of organic electronics.

12.
J Neurosurg ; : 1-8, 2023 Nov 17.
Article de Anglais | MEDLINE | ID: mdl-37976497

RÉSUMÉ

OBJECTIVE: Jugular foramen schwannomas (JFSs) are rarely seen, benign tumors with slow growth. Today, management options for JFSs include observation, surgery, and radiation. However, the optimal treatment strategy remains controversial. Stereotactic radiosurgery serves as a minimally invasive alternative or adjuvant therapeutic regimen of microsurgery. Gamma Knife radiosurgery is suitable for patients with JFS who have small- and medium-sized tumors and normal cranial nerve (CN) function. Hypofractionated stereotactic radiotherapy (HSRT) offers a potential radiobiological advantage and may result in better preservation of normal structures compared to single-fraction stereotactic radiosurgery. The aim of the article was to review the clinical and radiographic outcomes of patients with JFS who were treated using HSRT. METHODS: The authors retrospectively analyzed 74 patients with JFS who received HSRT between January 2009 and January 2020 in the authors' center. Among them, 53 patients were newly diagnosed with JFS, 19 patients had a previous history of microsurgical resection, and the other 2 patients underwent CyberKnife because of tumor recurrence after Gamma Knife radiosurgery. A total of 73 patients had preexisting CN symptoms and signs. The median tumor volume was 14.8 cm3 (range 0.5-41.2 cm3), and most of them (70.3%) were ≥ 10 cm3. The radiation dose regimen was prescribed depending on the tumor size, and more fractions were used in larger tumors. The median margin doses prescribed were 18.2 Gy/2 fractions, 21.0 Gy/3 fractions, and 21.6 Gy/4 fractions. RESULTS: The median follow-up was 103 months (range 18-158 months). After treatment, 42 (56.8%) patients had tumor regression, 27 (36.5%) patients had stable tumors, and 5 (6.8%) experienced tumor progression. Among them, MRI revealed that 1 patient had a complete response. Three patients received surgery at a median of 25 months because of tumor progression. One patient underwent ventriculoperitoneal shunt insertion for hydrocephalus that developed after HSRT independent of tumor progression. The 5-year progression-free survival rate was 93.2%. Preexisting cranial neuropathies improved in 46 patients, remained stable in 14, and worsened in 14. CONCLUSIONS: HSRT proved to be a safe and effective primary or adjuvant treatment strategy for JFSs, although 14 patients (18.9%) experienced some degree of delayed symptomatic deterioration posttreatment. This therapeutic option was demonstrated to provide both excellent tumor control and improvement in CN function.

13.
J Vis ; 23(13): 2, 2023 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-37917052

RÉSUMÉ

Although visual feature estimations are accurate and precise, overall estimation errors (i.e., the difference between estimates and actual values) tend to show systematic patterns. For example, estimates of orientations are systematically biased away from horizontal and vertical orientations, showing an oblique illusion. Additionally, many recent studies have demonstrated that estimations of current visual features are systematically biased toward previously seen features, showing a serial dependence. However, no study examined whether the overall estimation errors were correlated with the serial dependence bias. To address this question, we enrolled three groups of participants to estimate orientation, motion speed, and point-light-walker direction. The results showed that the serial dependence bias explained over 20% of overall estimation errors in the three tasks, indicating that we could use the serial dependence bias to predict the overall estimation errors. The current study first demonstrated that the serial dependence bias was not independent from the overall estimation errors. This finding could inspire researchers to investigate the neural bases underlying the visual feature estimation and serial dependence.


Sujet(s)
Illusions , Perception visuelle , Humains , Biais (épidémiologie) , Déplacement
14.
ACS Appl Mater Interfaces ; 15(37): 44589-44595, 2023 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-37698278

RÉSUMÉ

Rewritable paper, which can be used multiple times as an effective solution for sustainable development and lessen the heavy environment pollution, has received widespread attention. A photonic crystal with dye-free character and tunable structure color has attracted significant interest in this area. Generally, handwriting on the photonic crystal structure containing a responsive polymer or hydrogel ingredient was based on the change of lattice spacing. It is necessary to enrich the diversities of color adjustment mechanism for further application. Herein, a flexible rewritable photonic crystal structurally colored paper with excellent mechanical strength based on the hollow SiO2 (h-SiO2) particle and polyurethane was developed. Owning to the varied optical response of h-SiO2 photonic crystal film in different solvents, handwriting on this paper was realized by applying polarity solvents such as EG as colorless ink directly, which could also be erased by resoaking the film in water. Writing and erasing on this paper were totally reversible. The color adjustment mechanism and the realization of handwriting on this paper are totally different from those of the previous reported photonic crystal-based rewritable paper. The combination of quick handwriting and flexibility is significant for potential application as rewritable paper.

15.
Front Psychol ; 14: 1248307, 2023.
Article de Anglais | MEDLINE | ID: mdl-37744576

RÉSUMÉ

Much work has been done to uncover the mechanisms underlying form and motion information integration. However, no study examined the symmetry of the integration of form and motion across the temporal domain (i.e., serial dependence). In Experiment 1, we presented form and motion displays sequentially. In the form displays, dot pairs were oriented toward one screen position, indicating the form orientation; in the motion displays, dots moved radially outward. Their motion trajectories were oriented toward one screen position, indicating the motion direction. In each trial, participants reported their perceived form orientation after the form display or their perceived motion direction after the motion display. We found that the current trial's perceived motion direction was biased toward the previous trial's form orientation and vice versa, indicating serial dependencies between form orientation and motion direction. In Experiment 2, we changed the form and motion displays' reliability by varying the two displays' dot densities. The results showed that the serial dependence of form orientation on motion direction perception decreased only with increasing the current motion display's reliability; neither the reliability of the previous motion display nor that of the current form display significantly affected the serial dependence of motion direction on form orientation perception. Hence, serial dependencies between form orientation and motion direction were asymmetric. Our across-temporal integrations between form and motion, together with the simultaneous integration of form and motion revealed in the previous studies, depict a comprehensive mechanism underlying the integration of the two pieces of information.

16.
Biosensors (Basel) ; 13(4)2023 Mar 31.
Article de Anglais | MEDLINE | ID: mdl-37185522

RÉSUMÉ

In this work, a coumarin derivative, SWJT-14, was synthesized as a fluorescence probe to distinguish cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) in aqueous solutions. The detection limit of Cys, Hcy and GSH for the probe was 0.02 µM, 0.42 µM and 0.92 µM, respectively, which was lower than biothiols in cells. The probe reacted with biothiols to generate different products with different conjugated structures. Additionally, it could distinguish Cys, Hcy and GSH using fluorescence and UV-Vis spectra. The detection mechanism was confirmed by MS. SWJT-14 was successfully used in cellular experiments and detected both endogenous and exogenous biothiols.


Sujet(s)
Cystéine , Colorants fluorescents , Colorants fluorescents/composition chimique , Différenciation cellulaire , Coumarines/composition chimique , Glutathion , Spectrométrie de fluorescence
17.
Vision Res ; 208: 108235, 2023 07.
Article de Anglais | MEDLINE | ID: mdl-37094419

RÉSUMÉ

Psychophysical studies have demonstrated that heading perception from optic flow occurs in perceptual and post-perceptual stages. The post-perception stage is a complex concept, containing working memory. The current study examined whether working memory was involved in heading perception from optic flow by asking participants to conduct a heading perception task and recording their scalp EEG. On each trial, an optic flow display was presented, followed by a blank display. Participants were then asked to report their perceived heading. We know that participants would tend to automatically forget previous headings when they learned that previously presented headings were unrelated to the current heading perception to save cognitive resources. As a result, we could not decode previous headings from the EEG data of current trials. More importantly, if we successfully decoded previous headings when the blank display (optic flow) was presented, then working memory (perceptual representation stage) was involved in heading perception. Our results showed that the decoding accuracy was significantly higher than the chance level when the optic flow and blank displays were presented. Therefore, the current study provided electrophysiological evidence that heading perception from optic flow occurred in the perceptual representation and working memory stages, against the previous perceptual claim.


Sujet(s)
Perception du mouvement , Flux optique , Humains , Perception du mouvement/physiologie , Mémoire à court terme , Stimulation lumineuse
18.
Clin Genet ; 103(6): 663-671, 2023 06.
Article de Anglais | MEDLINE | ID: mdl-36999564

RÉSUMÉ

Limb-girdle muscular dystrophy recessive 1 (LGMDR1), previously known as LGMD2A, is a specific LGMD caused by a gene mutation encoding the calcium-dependent neutral cysteine protease calpain-3 (CAPN3). In our study, the compound heterozygosity with two missense variants c.635 T > C (p.Leu212Pro) and c.2120A > G (p.Asp707Gly) was identified in patients with LGMDR1. However, the pathogenicity of c.635 T > C has not been investigated. To evaluate the effects of this novel likely pathogenic variant to the motor system, the mouse model with c.635 T > C variant was prepared by CRISPR/Cas9 gene editing technique. The pathological results revealed that a limited number of inflammatory cells infiltrated the endomyocytes of certain c.635 T > C homozygous mice at 10 months of age. Compared with wild-type mice, motor function was not significantly impaired in Capn3 c. 635 T > C homozygous mice. Western blot and immunofluorescence assays further indicated that the expression levels of the Capn3 protein in muscle tissues of homozygous mice were similar to those of wild-type mice. However, the arrangement and ultrastructural alterations of the mitochondria in the muscular tissues of homozygous mice were confirmed by electron microscopy. Subsequently, muscle regeneration of LGMDR1 was simulated using cardiotoxin (CTX) to induce muscle necrosis and regeneration to trigger the injury modification process. The repair of the homozygous mice was significantly worse than that of the control mice at day 15 and day 21 following treatment, the c.635 T > C variant of Capn3 exhibited a significant effect on muscle regeneration of homozygous mice and induced mitochondrial damage. RNA-sequencing results demonstrated that the expression levels of the mitochondrial-related functional genes were significantly downregulated in the mutant mice. Taken together, the results of the present study strongly suggested that the LGMDR1 mouse model with a novel c.635 T > C variant in the Capn3 gene was significantly dysfunctional in muscle injury repair via impairment of the mitochondrial function.


Sujet(s)
Dystrophies musculaires des ceintures , Mutation faux-sens , Humains , Animaux , Souris , Protéines du muscle/génétique , Muscles squelettiques/anatomopathologie , Dystrophies musculaires des ceintures/génétique , Mutation , Calpain/génétique , Modèles animaux de maladie humaine
19.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article de Anglais | MEDLINE | ID: mdl-36902023

RÉSUMÉ

In humans, four small HERCs (HERC3-6) exhibit differential degrees of antiviral activity toward HIV-1. Recently we revealed a novel member HERC7 of small HERCs exclusively in non-mammalian vertebrates and varied copies of herc7 genes in distinct fish species, raising a question of what is the exact role for a certain fish herc7 gene. Here, a total of four herc7 genes (named HERC7a-d sequentially) are identified in the zebrafish genome. They are transcriptionally induced by a viral infection, and detailed promoter analyses indicate that zebrafish herc7c is a typical interferon (IFN)-stimulated gene. Overexpression of zebrafish HERC7c promotes SVCV (spring viremia of carp virus) replication in fish cells and concomitantly downregulates cellular IFN response. Mechanistically, zebrafish HERC7c targets STING, MAVS, and IRF7 for protein degradation, thus impairing cellular IFN response. Whereas the recently-identified crucian carp HERC7 has an E3 ligase activity for the conjugation of both ubiquitin and ISG15, zebrafish HERC7c only displays the potential to transfer ubiquitin. Considering the necessity for timely regulation of IFN expression during viral infection, these results together suggest that zebrafish HERC7c is a negative regulator of fish IFN antiviral response.


Sujet(s)
Maladies des poissons , Infections à Rhabdoviridae , Animaux , Humains , Danio zébré/génétique , Interférons/métabolisme , Protéines de poisson-zèbre/métabolisme , Antiviraux , Ubiquitines
20.
Dev Comp Immunol ; 142: 104656, 2023 05.
Article de Anglais | MEDLINE | ID: mdl-36746265

RÉSUMÉ

In mammals, right open reading frame kinases (RIOKs) are initially reported to participate in cancer cell proliferation, apoptosis, migration and invasion, and recently they have been related to host immune response. Little is known about the homologs of RIOKs in fish. In the current study, we cloned three homologous genes of RIOK family in yellow catfish (Pelteobagrus fulvidraco), termed Pfriok1, Pfriok2 and Pfriok3. Pfriok1, Pfriok2 and Pfriok3 were constitutively expressed at relatively high levels in yellow catfish tissues, and their mRNA levels were not changed under viral infection. Individual overexpression of PfRIOK1, PfRIOK2 and PfRIOK3 attenuated fish interferon (IFN) response, thereby promoting viral replication in fish cells. Mechanistically, yellow catfish RIOK proteins downregulated fish IFN response through attenuating TBK1 protein levels in cytoplasm. Our findings suggest that yellow catfish RIOK1, RIOK2 and RIOK3 are involved in downregulating fish IFN antiviral response.


Sujet(s)
Poissons-chats , Animaux , Poissons-chats/génétique , Interférons , Antiviraux , Protéines de poisson/génétique , Mammifères
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...