Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Am Nat ; 203(6): 726-735, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38781524

RÉSUMÉ

AbstractIn the world's highest mountain ranges, uncertainty about the upper elevational range limits of alpine animals represents a critical knowledge gap regarding the environmental limits of life and presents a problem for detecting range shifts in response to climate change. Here we report results of mountaineering mammal surveys in the Central Andes, which led to the discovery of multiple species of mice living at extreme elevations that far surpass previously assumed range limits for mammals. We livetrapped small mammals from ecologically diverse sites spanning >6,700 m of vertical relief, from the desert coast of northern Chile to the summits of the highest volcanoes in the Andes. We used molecular sequence data and whole-genome sequence data to confirm the identities of species that represent new elevational records and to test hypotheses regarding species limits. These discoveries contribute to a new appreciation of the environmental limits of vertebrate life.


Sujet(s)
Altitude , Animaux , Souris/génétique , Souris/physiologie , Chili , Phylogenèse , Répartition des animaux
2.
Curr Biol ; 33(20): R1040-R1042, 2023 10 23.
Article de Anglais | MEDLINE | ID: mdl-37875074

RÉSUMÉ

Our understanding of the limits of animal life is continually revised by scientific exploration of extreme environments. Here we report the discovery of mummified cadavers of leaf-eared mice, Phyllotis vaccarum, from the summits of three different Andean volcanoes at elevations 6,029-6,233 m above sea level in the Puna de Atacama in Chile and Argentina. Such extreme elevations were previously assumed to be completely uninhabitable by mammals. In combination with a live-captured specimen of the same species from the nearby summit of Volcán Llullaillaco (6,739 m)1, the summit mummies represent the highest altitude physical records of mammals in the world. We also report a chromosome-level genome assembly for P. vaccarum that, in combination with a whole-genome re-sequencing analysis and radiocarbon dating analysis, provides insights into the provenance and antiquity of the summit mice. Radiocarbon data indicate that the most ancient of the mummies are, at most, a few centuries old. Genomic polymorphism data revealed a high degree of continuity between the summit mice and conspecifics from lower elevations in the surrounding Altiplano. Genomic data also revealed equal numbers of males and females among the summit mice and evidence of close kinship between some individuals from the same summits. These findings bolster evidence for resident populations of Phyllotis at elevations >6,000 m and challenge assumptions about the environmental limits of vertebrate life and the physiological tolerances of small mammals.


Sujet(s)
Brassicaceae , Momies , Mâle , Femelle , Animaux , Souris , Chili , Génomique , Argentine , Sigmodontinae
3.
Genome Biol Evol ; 9(1): 7-19, 2017 01 01.
Article de Anglais | MEDLINE | ID: mdl-28172670

RÉSUMÉ

Many species are not completely reproductively isolated, resulting in hybridization and genetic introgression. Organellar genomes, such as those derived from mitochondria (mtDNA) and chloroplasts, introgress frequently in natural systems; however, the forces shaping patterns of introgression are not always clear. Here, we investigate extensive mtDNA introgression in western chipmunks, focusing on species in the Tamias quadrivittatus group from the central and southern Rocky Mountains. Specifically, we investigate the role of selection in driving patterns of introgression. We sequenced 51 mtDNA genomes from six species and combine these sequences with other published genomic data to yield annotated mitochondrial reference genomes for nine species of chipmunks. Genomic characterization was performed using a series of molecular evolutionary and phylogenetic analyses to test protein-coding genes for positive selection. We fit a series of maximum likelihood models using a model-averaging approach, assessed deviations from neutral expectations, and performed additional tests to search for codons under the influence of selection. We found no evidence for positive selection among these genomes, suggesting that selection has not been the driving force of introgression in these species. Thus, extensive mtDNA introgression among several species of chipmunks likely reflects genetic drift of introgressed alleles in historically fluctuating populations.


Sujet(s)
Mitochondries/génétique , Sciuridae/classification , Sciuridae/génétique , Animaux , ADN mitochondrial , Flux des gènes , Génome mitochondrial , Hybridation génétique , Phylogenèse , Sélection génétique , États-Unis
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE