Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Neuropsychopharmacology ; 48(7): 1067-1077, 2023 06.
Article de Anglais | MEDLINE | ID: mdl-36302847

RÉSUMÉ

Delayed upregulation of the neuronal chloride extruder KCC2 underlies the progressive shift in GABA signaling polarity during development. Conversely, KCC2 downregulation is observed in a variety of neurological and psychiatric disorders often associated with cognitive impairment. Reduced KCC2 expression and function in mature networks may disrupt GABA signaling and promote anomalous network activities underlying these disorders. However, the causal link between KCC2 downregulation, altered brain rhythmogenesis, and cognitive function remains elusive. Here, by combining behavioral exploration with in vivo electrophysiology we assessed the impact of chronic KCC2 downregulation in mouse dorsal hippocampus and showed it compromises both spatial and contextual memory. This was associated with altered hippocampal rhythmogenesis and neuronal hyperexcitability, with increased burst firing in CA1 neurons during non-REM sleep. Reducing neuronal excitability with terbinafine, a specific Task-3 leak potassium channel opener, occluded the impairment of contextual memory upon KCC2 knockdown. Our results establish a causal relationship between KCC2 expression and cognitive performance and suggest that non-epileptiform rhythmopathies and neuronal hyperexcitability are central to the deficits caused by KCC2 downregulation in the adult mouse brain.


Sujet(s)
Symporteurs , Animaux , Souris , Symporteurs/métabolisme , Hippocampe/métabolisme , Neurones/métabolisme , Encéphale/métabolisme , Acide gamma-amino-butyrique/métabolisme
2.
J Neurosci ; 42(2): 166-182, 2022 01 12.
Article de Anglais | MEDLINE | ID: mdl-34810232

RÉSUMÉ

The K+-Cl- cotransporter KCC2, encoded by the Slc12a5 gene, is a neuron-specific chloride extruder that tunes the strength and polarity of GABAA receptor-mediated transmission. In addition to its canonical ion transport function, KCC2 also regulates spinogenesis and excitatory synaptic function through interaction with a variety of molecular partners. KCC2 is enriched in the vicinity of both glutamatergic and GABAergic synapses, the activity of which in turn regulates its membrane stability and function. KCC2 interaction with the submembrane actin cytoskeleton via 4.1N is known to control its anchoring near glutamatergic synapses on dendritic spines. However, the molecular determinants of KCC2 clustering near GABAergic synapses remain unknown. Here, we used proteomics to identify novel KCC2 interacting proteins in the adult rat neocortex. We identified both known and novel candidate KCC2 partners, including some involved in neuronal development and synaptic transmission. These include gephyrin, the main scaffolding molecule at GABAergic synapses. Gephyrin interaction with endogenous KCC2 was confirmed by immunoprecipitation from rat neocortical extracts. We showed that gephyrin stabilizes plasmalemmal KCC2 and promotes its clustering in hippocampal neurons, mostly but not exclusively near GABAergic synapses, thereby controlling KCC2-mediated chloride extrusion. This study identifies gephyrin as a novel KCC2 anchoring molecule that regulates its membrane expression and function in cortical neurons.SIGNIFICANCE STATEMENT Fast synaptic inhibition in the brain is mediated by chloride-permeable GABAA receptors (GABAARs) and therefore relies on transmembrane chloride gradients. In neurons, these gradients are primarily maintained by the K/Cl cotransporter KCC2. Therefore, understanding the mechanisms controlling KCC2 expression and function is crucial to understand its physiological regulation and rescue its function in the pathology. KCC2 function depends on its membrane expression and clustering, but the underlying mechanisms remain unknown. We describe the interaction between KCC2 and gephyrin, the main scaffolding protein at inhibitory synapses. We show that gephyrin controls plasmalemmal KCC2 clustering and that loss of gephyrin compromises KCC2 function. Our data suggest functional units comprising GABAARs, gephyrin, and KCC2 act to regulate synaptic GABA signaling.


Sujet(s)
Cortex cérébral/métabolisme , Protéines membranaires/métabolisme , Neurones/métabolisme , Symporteurs/métabolisme , Animaux , Membrane cellulaire/métabolisme , Neurones GABAergiques/métabolisme , Mâle , Rats , Rat Sprague-Dawley , Récepteurs GABA-A/métabolisme , Synapses , Transmission synaptique/physiologie ,
3.
Cell Rep ; 28(1): 91-103.e7, 2019 07 02.
Article de Anglais | MEDLINE | ID: mdl-31269453

RÉSUMÉ

KCC2 regulates neuronal transmembrane chloride gradients and thereby controls GABA signaling in the brain. KCC2 downregulation is observed in numerous neurological and psychiatric disorders. Paradoxical, excitatory GABA signaling is usually assumed to contribute to abnormal network activity underlying the pathology. We tested this hypothesis and explored the functional impact of chronic KCC2 downregulation in the rat dentate gyrus. Although the reversal potential of GABAA receptor currents is depolarized in KCC2 knockdown neurons, this shift is compensated by depolarization of the resting membrane potential. This reflects downregulation of leak potassium currents. We show KCC2 interacts with Task-3 (KCNK9) channels and is required for their membrane expression. Increased neuronal excitability upon KCC2 suppression altered dentate gyrus rhythmogenesis, which could be normalized by chemogenetic hyperpolarization. Our data reveal KCC2 downregulation engages complex synaptic and cellular alterations beyond GABA signaling that perturb network activity thus offering additional targets for therapeutic intervention.


Sujet(s)
Gyrus denté/métabolisme , Neurones/métabolisme , Canaux potassiques à pores à domaines en tandem/métabolisme , Canaux potassiques/métabolisme , Crises épileptiques/métabolisme , Symporteurs/métabolisme , Animaux , Gyrus denté/effets des médicaments et des substances chimiques , Potentiels évoqués/génétique , Potentiels évoqués/physiologie , Antagonistes GABA/pharmacologie , Techniques de knock-down de gènes , Cellules HEK293 , Humains , Mâle , Potentiels de membrane/génétique , Potentiels de membrane/physiologie , Canaux potassiques/effets des médicaments et des substances chimiques , Rats , Rat Wistar , Crises épileptiques/induit chimiquement , Crises épileptiques/génétique , Symporteurs/génétique , Acide gamma-amino-butyrique/métabolisme ,
4.
J Cell Biol ; 216(8): 2443-2461, 2017 08 07.
Article de Anglais | MEDLINE | ID: mdl-28687665

RÉSUMÉ

Brain development involves extensive migration of neurons. Microtubules (MTs) are key cellular effectors of neuronal displacement that are assembled from α/ß-tubulin heterodimers. Mutation of the α-tubulin isotype TUBA1A is associated with cortical malformations in humans. In this study, we provide detailed in vivo and in vitro analyses of Tuba1a mutants. In mice carrying a Tuba1a missense mutation (S140G), neurons accumulate, and glial cells are dispersed along the rostral migratory stream in postnatal and adult brains. Live imaging of Tuba1a-mutant neurons revealed slowed migration and increased neuronal branching, which correlated with directionality alterations and perturbed nucleus-centrosome (N-C) coupling. Tuba1a mutation led to increased straightness of newly polymerized MTs, and structural modeling data suggest a conformational change in the α/ß-tubulin heterodimer. We show that Tuba8, another α-tubulin isotype previously associated with cortical malformations, has altered function compared with Tuba1a. Our work shows that Tuba1a plays an essential, noncompensated role in neuronal saltatory migration in vivo and highlights the importance of MT flexibility in N-C coupling and neuronal-branching regulation during neuronal migration.


Sujet(s)
Encéphale/métabolisme , Mouvement cellulaire , Microtubules/métabolisme , Neurogenèse , Neurones/métabolisme , Tubuline/métabolisme , Animaux , Encéphale/anatomopathologie , Noyau de la cellule/métabolisme , Centrosome/métabolisme , Régulation de l'expression des gènes au cours du développement , Génotype , Souris de lignée C3H , Souches mutantes de souris , Microscopie de fluorescence , Microtubules/anatomopathologie , Simulation de dynamique moléculaire , Mutation faux-sens , Névroglie/métabolisme , Névroglie/anatomopathologie , Neurones/anatomopathologie , Phénotype , Multimérisation de protéines , Structure quaternaire des protéines , Transduction du signal , Relation structure-activité , Facteurs temps , Imagerie accélérée , Tubuline/composition chimique , Tubuline/génétique , Enregistrement sur magnétoscope
5.
Nat Neurosci ; 19(7): 959-64, 2016 07.
Article de Anglais | MEDLINE | ID: mdl-27182818

RÉSUMÉ

Memory consolidation is thought to involve a hippocampo-cortical dialog during sleep to stabilize labile memory traces for long-term storage. However, direct evidence supporting this hypothesis is lacking. We dynamically manipulated the temporal coordination between the two structures during sleep following training on a spatial memory task specifically designed to trigger encoding, but not memory consolidation. Reinforcing the endogenous coordination between hippocampal sharp wave-ripples, cortical delta waves and spindles by timed electrical stimulation resulted in a reorganization of prefrontal cortical networks, along with subsequent increased prefrontal responsivity to the task and high recall performance on the next day, contrary to control rats, which performed at chance levels. Our results provide, to the best of our knowledge, the first direct evidence for a causal role of a hippocampo-cortical dialog during sleep in memory consolidation, and indicate that the underlying mechanism involves a fine-tuned coordination between sharp wave-ripples, delta waves and spindles.


Sujet(s)
Comportement animal/physiologie , Hippocampe/physiologie , Consolidation de la mémoire/physiologie , Mémoire/physiologie , Rappel mnésique/physiologie , Sommeil/physiologie , Animaux , Électroencéphalographie/méthodes , Mâle , Cortex préfrontal/physiologie , Rat Long-Evans
6.
J Neurosci ; 35(48): 15772-86, 2015 Dec 02.
Article de Anglais | MEDLINE | ID: mdl-26631461

RÉSUMÉ

Expression of the neuronal K/Cl transporter KCC2 is tightly regulated throughout development and by both normal and pathological neuronal activity. Changes in KCC2 expression have often been associated with altered chloride homeostasis and GABA signaling. However, recent evidence supports a role of KCC2 in the development and function of glutamatergic synapses through mechanisms that remain poorly understood. Here we show that suppressing KCC2 expression in rat hippocampal neurons precludes long-term potentiation of glutamatergic synapses specifically by preventing activity-driven membrane delivery of AMPA receptors. This effect is independent of KCC2 transporter function and can be accounted for by increased Rac1/PAK- and LIMK-dependent cofilin phosphorylation and actin polymerization in dendritic spines. Our results demonstrate that KCC2 plays a critical role in the regulation of spine actin cytoskeleton and gates long-term plasticity at excitatory synapses in cortical neurons.


Sujet(s)
Facteurs de dépolymérisation de l'actine/métabolisme , Neurones/métabolisme , Récepteur de l'AMPA/métabolisme , Symporteurs/métabolisme , Actines/métabolisme , Animaux , Cellules cultivées , Épines dendritiques/métabolisme , Relation dose-effet des médicaments , Doxycycline/pharmacologie , Embryon de mammifère , Antienzymes/pharmacologie , Potentiels post-synaptiques excitateurs/effets des médicaments et des substances chimiques , Potentiels post-synaptiques excitateurs/génétique , Exocytose/effets des médicaments et des substances chimiques , Exocytose/génétique , Hippocampe/cytologie , Neurones/effets des médicaments et des substances chimiques , Neurones/ultrastructure , Transport des protéines/effets des médicaments et des substances chimiques , Transport des protéines/génétique , Petit ARN interférent/génétique , Petit ARN interférent/métabolisme , Rats , Rat Sprague-Dawley , Symporteurs/génétique , Thiazoles/antagonistes et inhibiteurs , Thiazoles/pharmacologie , Thioglycolates/antagonistes et inhibiteurs , Thioglycolates/pharmacologie ,
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...