Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 4 de 4
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Front Cardiovasc Med ; 11: 1325160, 2024.
Article de Anglais | MEDLINE | ID: mdl-38938649

RÉSUMÉ

Background: During donation after circulatory death (DCD), cardiac grafts are exposed to potentially damaging conditions that can impact their quality and post-transplantation outcomes. In a clinical DCD setting, patients have closed chests in most cases, while many experimental models have used open-chest conditions. We therefore aimed to investigate and characterize differences in open- vs. closed-chest porcine models. Methods: Withdrawal of life-sustaining therapy (WLST) was simulated in anesthetized juvenile male pigs by stopping mechanical ventilation following the administration of a neuromuscular block. Functional warm ischemic time (fWIT) was defined to start when systolic arterial pressure was <50 mmHg. Hemodynamic changes and blood chemistry were analyzed. Two experimental groups were compared: (i) an open-chest group with sternotomy prior to WLST and (ii) a closed-chest group with sternotomy after fWIT. Results: Hemodynamic changes during the progression from WLST to fWIT were initiated by a rapid decline in blood oxygen saturation and a subsequent cardiovascular hyperdynamic (HD) period characterized by temporary elevations in heart rates and arterial pressures in both groups. Subsequently, heart rate and systolic arterial pressure decreased until fWIT was reached. Pigs in the open-chest group displayed a more rapid transition to the HD phase after WLST, with peak heart rate and peak rate-pressure product occurring significantly earlier. Furthermore, the HD phase duration tended to be shorter and less intense (lower peak rate-pressure product) in the open-chest group than in the closed-chest group. Discussion: Progression from WLST to fWIT was more rapid, and the hemodynamic changes tended to be less pronounced in the open-chest group than in the closed-chest group. Our findings support clear differences between open- and closed-chest models of DCD. Therefore, recommendations for clinical DCD protocols based on findings in open-chest models must be interpreted with care.

2.
J Am Heart Assoc ; 13(8): e033503, 2024 Apr 16.
Article de Anglais | MEDLINE | ID: mdl-38606732

RÉSUMÉ

BACKGROUND: Cardiac donation after circulatory death is a promising option to increase graft availability. Graft preservation with 30 minutes of hypothermic oxygenated perfusion (HOPE) before normothermic machine perfusion may improve cardiac recovery as compared with cold static storage, the current clinical standard. We investigated the role of preserved nitric oxide synthase activity during HOPE on its beneficial effects. METHODS AND RESULTS: Using a rat model of donation after circulatory death, hearts underwent in situ ischemia (21 minutes), were explanted for a cold storage period (30 minutes), and then reperfused under normothermic conditions (60 minutes) with left ventricular loading. Three cold storage conditions were compared: cold static storage, HOPE, and HOPE with Nω-nitro-L-arginine methyl ester (nitric oxide synthase inhibitor). To evaluate potential confounding effects of high coronary flow during early reperfusion in HOPE hearts, bradykinin was administered to normalize coronary flow to HOPE levels in 2 additional groups (cold static storage and HOPE with Nω-nitro-L-arginine methyl ester). Cardiac recovery was significantly improved in HOPE versus cold static storage hearts, as determined by cardiac output, left ventricular work, contraction and relaxation rates, and coronary flow (P<0.05). Furthermore, HOPE attenuated postreperfusion calcium overload. Strikingly, the addition of Nω-nitro-L-arginine methyl ester during HOPE largely abolished its beneficial effects, even when early reperfusion coronary flow was normalized to HOPE levels. CONCLUSIONS: HOPE provides superior preservation of ventricular and vascular function compared with the current clinical standard. Importantly, HOPE's beneficial effects require preservation of nitric oxide synthase activity during the cold storage. Therefore, the application of HOPE before normothermic machine perfusion is a promising approach to optimize graft recovery in donation after circulatory death cardiac grafts.


Sujet(s)
Transplantation cardiaque , Animaux , Rats , Humains , Transplantation cardiaque/méthodes , Monoxyde d'azote , Donneurs de tissus , Perfusion/méthodes , Nitric oxide synthase
3.
J Cell Mol Med ; 28(8): e18281, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38652092

RÉSUMÉ

Conditions to which the cardiac graft is exposed during transplantation with donation after circulatory death (DCD) can trigger the recruitment of macrophages that are either unpolarized (M0) or pro-inflammatory (M1) as well as the release of extracellular vesicles (EV). We aimed to characterize the effects of M0 and M1 macrophage-derived EV administration on post-ischaemic functional recovery and glucose metabolism using an isolated rat heart model of DCD. Isolated rat hearts were subjected to 20 min aerobic perfusion, followed by 27 min global, warm ischaemia or continued aerobic perfusion and 60 min reperfusion with or without intravascular administration of EV. Four experimental groups were compared: (1) no ischaemia, no EV; (2) ischaemia, no EV; (3) ischaemia with M0-macrophage-dervied EV; (4) ischaemia with M1-macrophage-derived EV. Post-ischaemic ventricular and metabolic recovery were evaluated. During reperfusion, ventricular function was decreased in untreated ischaemic and M1-EV hearts, but not in M0-EV hearts, compared to non-ischaemic hearts (p < 0.05). In parallel with the reduced functional recovery in M1-EV versus M0-EV ischaemic hearts, rates of glycolysis from exogenous glucose and oxidative metabolism tended to be lower, while rates of glycogenolysis and lactate release tended to be higher. EV from M0- and M1-macrophages differentially affect post-ischaemic cardiac recovery, potentially by altering glucose metabolism in a rat model of DCD. Targeted EV therapy may be a useful approach for modulating cardiac energy metabolism and optimizing graft quality in the setting of DCD.


Sujet(s)
Vésicules extracellulaires , Transplantation cardiaque , Macrophages , Animaux , Vésicules extracellulaires/métabolisme , Vésicules extracellulaires/transplantation , Rats , Macrophages/métabolisme , Mâle , Transplantation cardiaque/méthodes , Glucose/métabolisme , Myocarde/métabolisme , Modèles animaux de maladie humaine , Récupération fonctionnelle , Glycolyse , Coeur/physiopathologie , Coeur/physiologie
4.
Front Cardiovasc Med ; 8: 669205, 2021.
Article de Anglais | MEDLINE | ID: mdl-34195235

RÉSUMÉ

Introduction: Donation after circulatory death (DCD) could substantially improve donor heart availability. In DCD, the heart is not only exposed to a period of warm ischemia, but also to a damaging pre-ischemic phase. We hypothesized that the DCD-relevant pre-ischemic lactate levels negatively affect the post-ischemic functional and mitochondrial recovery in an isolated rat heart model of DCD. Methods: Isolated, working rat hearts underwent 28.5' of global ischemia and 60' of reperfusion. Prior to ischemia, hearts were perfused with one of three pre-ischemic lactate levels: no lactate (0 Lac), physiologic lactate (0.5 mM; 0.5 Lac), or DCD-relevant lactate (1 mM; 1 Lac). In a fourth group, an inhibitor of the mitochondrial calcium uniporter was added in reperfusion to 1 Lac hearts (1 Lac + Ru360). Results: During reperfusion, left ventricular work (heart rate-developed pressure product) was significantly greater in 0.5 Lac hearts compared to 0 Lac or 1 Lac. In 1 vs. 0.5 Lac hearts, in parallel with a decreased function, cellular and mitochondrial damage was greater, tissue calcium content tended to increase, while oxidative stress damage tended to decrease. The addition of Ru360 to 1 Lac hearts partially abrogated the negative effects of the DCD-relevant pre-ischemic lactate levels (greater post-ischemic left ventricular work and less cytochrome c release in 1 Lac+Ru360 vs. 1 Lac). Conclusion: DCD-relevant levels of pre-ischemic lactate (1 mM) reduce contractile, cellular, and mitochondrial recovery during reperfusion compared to physiologic lactate levels. Inhibition of mitochondrial calcium uptake during early reperfusion improves the post-ischemic recovery of 1 Lac hearts, indicating calcium overload as a potential therapeutic reperfusion target for DCD hearts.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE