Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 18 de 18
Filtrer
1.
DNA Repair (Amst) ; 96: 102996, 2020 12.
Article de Anglais | MEDLINE | ID: mdl-33126043

RÉSUMÉ

In the budding yeast Saccharomyces cerevisiae, telomerase is constitutively active and is essential for chromosome end protection and illimited proliferation of cell populations. However, upon inactivation of telomerase, alternative mechanims of telomere maintenance allow proliferation of only extremely rare survivors. S. cerevisiae type I and type II survivors differ by the nature of the donor sequences used for repair by homologous recombination of the uncapped terminal TG1-3 telomeric sequences. Type I amplifies the subtelomeric Y' sequences and is more efficient than type II, which amplifies the terminal TG1-3 repeats. However, type II survivors grow faster than type I survivors and can easily outgrow them in liquid cultures. The mechanistic interest of studying S. cerevisiae telomeric recombination is reinforced by the fact that type II recombination is the equivalent of the alternative lengthening of telomeres (ALT) pathway that is used by 5-15 % of cancer types as an alternative to telomerase reactivation. In budding yeast, only around half of the 32 telomeres harbor Y' subtelomeric elements. We report here that in strains harboring Y' elements on all telomeres, type II survivors are not observed, most likely due to an increase in the efficiency of type I recombination. However, in a temperature-sensitive cdc13-1 mutant grown at semi-permissive temperature, the increased amount of telomeric TG1-3 repeats could overcome type II inhibition by the subtelomeric Y' sequences. Strikingly, in the 100 % Y' strain the replicative senescence crisis normally provoked by inactivation of telomerase completely disappeared and the severity of the crisis was proportional to the percentage of chromosome-ends lacking Y' subtelomeric sequences. The present study highlights the fact that the nature of subtelomeric elements can influence the selection of the pathway of telomere maintenance by recombination, as well as the response of the cell to telomeric damage caused by telomerase inactivation.


Sujet(s)
Vieillissement de la cellule , Recombinaison génétique , Séquences d'acides nucléiques régulatrices , Saccharomyces cerevisiae/génétique , Homéostasie des télomères , Rad51 Recombinase/métabolisme , Protéine Rad52 de réparation-recombinaison de l'ADN/métabolisme , Saccharomyces cerevisiae/physiologie , Protéines de Saccharomyces cerevisiae/métabolisme , Telomerase , Télomère/métabolisme
2.
Acta Neuropathol Commun ; 7(1): 175, 2019 11 09.
Article de Anglais | MEDLINE | ID: mdl-31706351

RÉSUMÉ

All cancer cells need to maintain functional telomeres to sustain continuous cell division and proliferation. In human diffuse gliomas, functional telomeres are maintained due either to reactivation of telomerase expression, the main pathway in most cancer types, or to activation of a mechanism called the alternative lengthening of telomeres (ALT). The presence of IDH1/2 mutations (IDH-mutant) together with loss of ATRX expression (ATRX-lost) are frequently associated with ALT in diffuse gliomas. However, detection of ALT, and a fortiori its quantification, are rarely, if ever, measured in neuropathology laboratories. We measured the level of ALT activity using the previously described quantitative "C-circle" assay and analyzed it in a well characterized cohort of 104 IDH-mutant and ATRX-lost adult diffuse gliomas. We report that in IDH-mutant ATRX-lost anaplastic astrocytomas, the intensity of ALT was inversely correlated with age (p < 0.001), the younger the patient, the higher the intensity of ALT. Strikingly, glioblastomas having progressed from anaplastic astrocytomas did not exhibit this correlation. ALT activity level in the tumor did not depend on telomere length in healthy tissue cells from the same patient. In summary, we have uncovered the existence, in anaplastic astrocytomas but not in glioblastomas with the same IDH and ATRX mutations, of a correlation between patient age and the level of activity of ALT, a telomerase-independent pathway of telomere maintenance.


Sujet(s)
Astrocytome/métabolisme , Tumeurs du cerveau/métabolisme , Isocitrate dehydrogenases/physiologie , Homéostasie des télomères/physiologie , Protéine nucléaire liée à l'X/biosynthèse , Adulte , Sujet âgé , Astrocytome/génétique , Astrocytome/anatomopathologie , Tumeurs du cerveau/génétique , Tumeurs du cerveau/anatomopathologie , Études de cohortes , Femelle , Régulation de l'expression des gènes tumoraux , Humains , Mâle , Adulte d'âge moyen , Mutation/physiologie , Protéine nucléaire liée à l'X/génétique
3.
Nucleic Acids Res ; 47(12): 6250-6268, 2019 07 09.
Article de Anglais | MEDLINE | ID: mdl-31006804

RÉSUMÉ

Specialized telomeric proteins have an essential role in maintaining genome stability through chromosome end protection and telomere length regulation. In the yeast Saccharomyces cerevisiae, the evolutionary conserved CST complex, composed of the Cdc13, Stn1 and Ten1 proteins, largely contributes to these functions. Here, we report genetic interactions between TEN1 and several genes coding for transcription regulators. Molecular assays confirmed this novel function of Ten1 and further established that it regulates the occupancies of RNA polymerase II and the Spt5 elongation factor within transcribed genes. Since Ten1, but also Cdc13 and Stn1, were found to physically associate with Spt5, we propose that Spt5 represents the target of CST in transcription regulation. Moreover, CST physically associates with Hmo1, previously shown to mediate the architecture of S-phase transcribed genes. The fact that, genome-wide, the promoters of genes down-regulated in the ten1-31 mutant are prefentially bound by Hmo1, leads us to propose a potential role for CST in synchronizing transcription with replication fork progression following head-on collisions.


Sujet(s)
Protéines du cycle cellulaire/métabolisme , Protéines chromosomiques nonhistones/métabolisme , RNA polymerase II/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines télomériques/métabolisme , Transcription génétique , Protéines du cycle cellulaire/génétique , Chromatine/métabolisme , Protéines chromosomiques nonhistones/génétique , Kinases cyclines-dépendantes/génétique , Régulation de l'expression des gènes fongiques , Phase S/génétique , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Facteurs d'élongation transcriptionnelle/métabolisme , Kinase activatrice des CDK
4.
Int J Mol Sci ; 18(9)2017 Aug 29.
Article de Anglais | MEDLINE | ID: mdl-28850092

RÉSUMÉ

All tumors have in common to reactivate a telomere maintenance mechanism to allow for unlimited proliferation. On the other hand, genetic instability found in some tumors can result from the loss of telomeres. Here, we measured telomere length in colorectal cancers (CRCs) using TRF (Telomere Restriction Fragment) analysis. Telomeric DNA content was also quantified as the ratio of total telomeric (TTAGGG) sequences over that of the invariable Alu sequences. In most of the 125 CRCs analyzed, there was a significant diminution in telomere length compared with that in control healthy tissue. Only 34 tumors exhibited no telomere erosion and, in some cases, a slight telomere lengthening. Telomere length did not correlate with age, gender, tumor stage, tumor localization or stage of tumor differentiation. In addition, while telomere length did not correlate with the presence of a mutation in BRAF (V-raf murine sarcoma viral oncogene homolog B), PIK3CA (phosphatidylinositol 3-kinase catalytic subunit), or MSI status, it was significantly associated with the occurrence of a mutation in KRAS. Interestingly, we found that the shorter the telomeres in healthy tissue of a patient, the larger an increase in telomere length in the tumor. Our study points to the existence of two types of CRCs based on telomere length and reveals that telomere length in healthy tissue might influence telomere maintenance mechanisms in the tumor.


Sujet(s)
Phosphatidylinositol 3-kinases de classe I/génétique , Tumeurs colorectales/génétique , Protéines proto-oncogènes B-raf/génétique , Protéines proto-oncogènes p21(ras)/génétique , Télomère/génétique , Marqueurs biologiques tumoraux/génétique , Tumeurs colorectales/anatomopathologie , Femelle , Humains , Mâle , Instabilité des microsatellites , Mutation , Anatomopathologie moléculaire , Homéostasie des télomères/génétique
5.
J Neurooncol ; 135(2): 381-390, 2017 Nov.
Article de Anglais | MEDLINE | ID: mdl-28755323

RÉSUMÉ

Human malignant gliomas exhibit acquisition of either one of two telomere maintenance mechanisms, resulting from either reactivation of telomerase expression or activation of an alternative lengthening of telomeres (ALT) mechanism. In the present study, we analyzed 63 human malignant gliomas for the presence of ALT-specific extrachromosomal circles of telomeric DNA (C-circles) and measured telomerase expression, telomeric DNA content (Telo/Alu method), and telomeric repeat-containing RNAs (TERRA) levels. We also assessed histomolecular markers routinely used in clinical practice. The presence of C-circles significantly correlated with IDH1/2 mutation, MGMT exon 1 methylation, low Ki-67 immunostaining, increased telomeric DNA content, absence of functional ATRX protein and level of HTERT gene expression. In multivariate analysis, we observed a trend to a correlation between elevated TERRA levels and increased survival. Interestingly, the C-circles assay allowed to detect ALT activation in glioblastomas exhibiting wild-type IDH1/2 and ATRX expression. These results suggest that, after the correlations uncovered here have been confirmed on larger numbers of tumors, telomeric markers might be useful in improving diagnosis. They also point out to the utility of using the specific, sensitive and quantitative C-circle and Telo/Alu assays that can work with as few as 30 ng of tumor DNA.


Sujet(s)
Tumeurs du cerveau/métabolisme , Gliome/métabolisme , Homéostasie des télomères , Adulte , Encéphale/métabolisme , Encéphale/anatomopathologie , Encéphale/chirurgie , Tumeurs du cerveau/génétique , Tumeurs du cerveau/anatomopathologie , Tumeurs du cerveau/chirurgie , Lignée cellulaire tumorale , Études de cohortes , DNA modification methylases/génétique , DNA modification methylases/métabolisme , Enzymes de réparation de l'ADN/génétique , Enzymes de réparation de l'ADN/métabolisme , Femelle , Gliome/génétique , Gliome/anatomopathologie , Gliome/chirurgie , Humains , Isocitrate dehydrogenases/génétique , Mâle , Adulte d'âge moyen , Grading des tumeurs , ARN/métabolisme , Telomerase/métabolisme , Homéostasie des télomères/physiologie , Protéines suppresseurs de tumeurs/génétique , Protéines suppresseurs de tumeurs/métabolisme , Protéine nucléaire liée à l'X/métabolisme
6.
Mol Cell Biol ; 35(16): 2818-30, 2015 Aug.
Article de Anglais | MEDLINE | ID: mdl-26055325

RÉSUMÉ

Mutations in ATRX (alpha thalassemia/mental retardation syndrome X-linked), a chromatin-remodeling protein, are associated with the telomerase-independent ALT (alternative lengthening of telomeres) pathway of telomere maintenance in several types of cancer, including human gliomas. In telomerase-positive glioma cells, we found by immunofluorescence that ATRX localized not far from the chromosome ends but not exactly at the telomere termini. Chromatin immunoprecipitation (ChIP) experiments confirmed a subtelomeric localization for ATRX, yet short hairpin RNA (shRNA)-mediated genetic inactivation of ATRX failed to trigger the ALT pathway. Cohesin has been recently shown to be part of telomeric chromatin. Here, using ChIP, we showed that genetic inactivation of ATRX provoked diminution in the amount of cohesin in subtelomeric regions of telomerase-positive glioma cells. Inactivation of ATRX also led to diminution in the amount of TERRAs, noncoding RNAs resulting from transcription of telomeric DNA, as well as to a decrease in RNA polymerase II (RNAP II) levels at the telomeres. Our data suggest that ATRX might establish functional interactions with cohesin on telomeric chromatin in order to control TERRA levels and that one or the other or both of these events might be relevant to the triggering of the ALT pathway in cancer cells that exhibit genetic inactivation of ATRX.


Sujet(s)
Protéines du cycle cellulaire/métabolisme , Protéines chromosomiques nonhistones/métabolisme , Helicase/génétique , Gliome/génétique , Protéines nucléaires/génétique , Télomère/génétique , Transcription génétique , Protéines du cycle cellulaire/analyse , Lignée cellulaire tumorale , Chromatine/métabolisme , Protéines chromosomiques nonhistones/analyse , Helicase/analyse , Gliome/métabolisme , Humains , Protéines nucléaires/analyse , Interférence par ARN , RNA polymerase II/métabolisme , ARN non traduit/métabolisme , Telomerase/métabolisme , Télomère/métabolisme , Télomère/ultrastructure , Homéostasie des télomères , Protéine nucléaire liée à l'X ,
7.
DNA Repair (Amst) ; 12(3): 212-26, 2013 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-23312805

RÉSUMÉ

Replication Protein A (RPA) is an evolutionary conserved essential complex with single-stranded DNA binding properties that has been implicated in numerous DNA transactions. At damaged telomeres, Saccharomyces cerevisiae RPA recruits the Mec1-Ddc2 module of the DNA damage checkpoint network, its only known function in DNA damage signaling. Here, we describe rfa1 mutants (rfa1-1, rfa1-9, rfa1-10, rfa1-11 and rfa1-12) that are proficient in this checkpoint but nevertheless exhibit deregulation of cell cycle control upon telomere uncapping induced by the cdc13-1 mutation. Overriding of this damage-induced checkpoint-independent cell cycle block in the rfa1 mutants was suppressed following genetic inactivation of either TEL1 or EST2/telomerase. Altogether, our results suggest that a previously non-suspected function of RPA is to block cell cycle progression upon telomere uncapping using a yet unidentified pathway that functions in a Mec1-Ddc2-independent manner. We propose that in the rfa1 mutants, ill-masking of uncapped telomeres provokes inappropriate access of Tel1 and inappropriate functioning of telomerase, which, by yet unknown mechanisms, allows cell division to take place in spite of the block established by the DNA damage checkpoint. In the present study, we also observed that upon telomere uncapping, rfa1-12, but not the other studied rfa1 mutants, triggered telomeric recombination in the presence of functional telomerase. In conclusion, the present study identifies a novel pathway of telomere end protection that utilizes a previously unsuspected function of RPA at the telomeres.


Sujet(s)
Points de contrôle du cycle cellulaire , Recombinaison génétique , Protéine A de réplication/génétique , Protéines de Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/génétique , Télomère/génétique , ADN fongique/génétique , ADN simple brin/génétique , Viabilité microbienne/génétique , Mutation faux-sens , Protéine A de réplication/métabolisme , Protéine A de réplication/physiologie , Saccharomyces cerevisiae/croissance et développement , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/physiologie , Spores fongiques/génétique , Spores fongiques/métabolisme , Protéines télomériques/génétique , Protéines télomériques/métabolisme
8.
PLoS One ; 7(1): e30451, 2012.
Article de Anglais | MEDLINE | ID: mdl-22291956

RÉSUMÉ

BACKGROUND: In budding yeast, the highly conserved Tel2 protein is part of several complexes and its main function is now believed to be in the biogenesis of phosphatidyl inositol 3-kinase related kinases. PRINCIPAL FINDINGS: To uncover potentially novel functions of Tel2, we set out to isolate temperature-sensitive (ts) mutant alleles of TEL2 in order to perform genetic screenings. MED15/GAL11, a subunit of Mediator, a general regulator of transcription, was isolated as a suppressor of these mutants. The isolated tel2 mutants exhibited a short telomere phenotype that was partially rescued by MED15/GAL11 overexpression. The tel2-15 mutant was markedly deficient in the transcription of EST2, coding for the catalytic subunit of telomerase, potentially explaining the short telomere phenotype of this mutant. In parallel, a two-hybrid screen identified an association between Tel2 and Rvb2, a highly conserved member of the AAA+ family of ATPases further found by in vivo co-immunoprecipitation to be tight and constitutive. Transiently overproduced Tel2 and Med15/Gal11 associated together, suggesting a potential role for Tel2 in transcription. Other Mediator subunits, as well as SUA7/TFIIB, also rescued the tel2-ts mutants. SIGNIFICANCE: Altogether, the present data suggest the existence of a novel role for Tel2, namely in transcription, possibly in cooperation with Rvb2 and involving the existence of physical interactions with the Med15/Gal11 Mediator subunit.


Sujet(s)
Épistasie/physiologie , Complexe médiateur/génétique , Complexe médiateur/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae , Protéines télomériques/génétique , Protéines télomériques/métabolisme , Helicase/génétique , Helicase/métabolisme , Helicase/physiologie , Test de complémentation , Immunoprécipitation , Organismes génétiquement modifiés , Liaison aux protéines/physiologie , Sous-unités de protéines/génétique , Sous-unités de protéines/métabolisme , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/physiologie , Spécificité du substrat/génétique , Télomère/métabolisme , Température , Transactivateurs/génétique , Transactivateurs/métabolisme
9.
FEBS Lett ; 585(24): 3890-7, 2011 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-22100294

RÉSUMÉ

Telomerase is a reverse transcriptase that maintains linear telomeres at a constant length. Here, we report that in the budding yeast Saccharomyces cerevisiae, Rvb2, a highly conserved member of the AAA+ family of ATPases, physically associates with telomerase/Est2 in vivo, both expressed from their endogenous promoter. Importantly, in genetic settings leading to a failure to recruit telomerase at telomeric ends, Rvb2 still associated with Est2. On the other hand, Rvb2 was present in immunoprecipitates of crosslinked telomeric chromatin even in the presumed absence of telomerase at the telomeres. Finally, we could also isolate RVB2 mutant alleles conferring slight, but stable, telomere shortening.


Sujet(s)
Helicase/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/métabolisme , Telomerase/métabolisme , Séquence d'acides aminés , Chromatine/composition chimique , Chromatine/métabolisme , Helicase/composition chimique , Helicase/génétique , Helicase/isolement et purification , Humains , Données de séquences moléculaires , Mutation , Liaison aux protéines , Saccharomyces cerevisiae/enzymologie , Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/composition chimique , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/isolement et purification , Télomère/génétique , Raccourcissement des télomères
10.
Mol Cell Biol ; 29(4): 965-85, 2009 Feb.
Article de Anglais | MEDLINE | ID: mdl-19047370

RÉSUMÉ

In the absence of telomerase, telomeres erode, provoking accumulation of DNA damage and death by senescence. Rare survivors arise, however, due to Rad52-based amplification of telomeric sequences by homologous recombination. The present study reveals that in budding yeast cells, postsenescence survival relying on amplification of the TG(1-3) telomeric repeats can take place in the absence of Rad52 when overelongated telomeres are present during senescence (hence its designation ILT, for inherited-long-telomere, pathway). By growth competition, the Rad52-independent pathway was almost as efficient as the Rad51- and Rad52-dependent pathway that predominates in telomerase-negative cells. The ILT pathway could also be triggered by increased telomerase accessibility before telomerase removal, combined with loss of telomere protection, indicating that prior accumulation of recombination proteins was not required. The ILT pathway was dependent on Rad50 and Mre11 but not on the Rad51 recombinase and Rad59, thus making it distinct from both the type II (budding yeast ALT [alternative lengthening of telomeres]) and type I pathways amplifying the TG(1-3) repeats and subtelomeric sequences, respectively. The ILT pathway also required the Rad1 endonuclease and Elg1, a replication factor C (RFC)-like complex subunit, but not Rad24 or Ctf18 (two subunits of two other RFC-like complexes), the Dnl4 ligase, Yku70, or Nej1. Possible mechanisms for this Rad52-independent pathway of telomeric repeat amplification are discussed. The effects of inherited long telomeres on Rad52-dependent recombination are also reported.


Sujet(s)
Séquences répétées d'acides nucléiques/génétique , Saccharomycetales/cytologie , Saccharomycetales/enzymologie , Télomère/génétique , Télomère/métabolisme , Prolifération cellulaire , Cinétique , Viabilité microbienne , Protéine Rad52 de réparation-recombinaison de l'ADN/métabolisme , Recombinaison génétique/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Telomerase/métabolisme , Facteurs temps
11.
Cell Cycle ; 7(17): 2749-61, 2008 Sep 01.
Article de Anglais | MEDLINE | ID: mdl-18728387

RÉSUMÉ

Cells respond to DNA or mitotic spindle damage by activating specific pathways that halt the cell cycle to allow for possible repair. Here, we report that inactivation of one of the Saccharomyces cerevisiae 14-3-3 proteins, Bmh1, as well as the bmh1-S189P bmh2 mutant, failed to exhibit normal spindle damage-induced cell cycle delay and conferred hypersensitivity to benomyl or nocodazole. These defects were additive with those conferred by the bub2 and mad2 spindle checkpoint mutations. Following cdc13-1-induced DNA damage, the 14-3-3 response was additive with those provided by the Mec1 (ATR-related)-controlled Rad53 (CHK2-related) and Chk1 (CHK1-related) checkpoint pathways and also distinct from the PKA (Protein Kinase A)-controlled response. Therefore, the budding yeast 14-3-3 proteins contribute to the robustness of the two major mitotic checkpoints and, by doing so, may also ensure optimal coordination between the responses to two distinct types of damage.


Sujet(s)
Protéines 14-3-3/métabolisme , Altération de l'ADN , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/cytologie , Saccharomyces cerevisiae/métabolisme , Appareil du fuseau/métabolisme , Substitution d'acide aminé/effets des médicaments et des substances chimiques , Cycle cellulaire/effets des médicaments et des substances chimiques , Protéines du cycle cellulaire/métabolisme , Checkpoint kinase 2 , Cycline B/métabolisme , Mutation/génétique , Nocodazole/pharmacologie , Protein-Serine-Threonine Kinases/métabolisme , Saccharomyces cerevisiae/effets des médicaments et des substances chimiques , Appareil du fuseau/effets des médicaments et des substances chimiques , Télomère/effets des médicaments et des substances chimiques , Protéines télomériques/métabolisme
12.
Biochimie ; 90(1): 41-59, 2008 Jan.
Article de Anglais | MEDLINE | ID: mdl-17764802

RÉSUMÉ

Telomeres, the ends of linear chromosomes, contain repeated TG-rich sequences which, in dividing cells, must be constantly replenished in order to avoid chromosome erosion and, hence, genomic instability. Moreover, unprotected telomeres are prone to end-to-end fusions. Telomerase, a specialized reverse transcriptase with a built-in RNA template, or, in the absence of telomerase, alternative pathways of telomere maintenance are required for continuous cell proliferation in actively dividing cells as well as in cancerous cells emerging in deregulated somatic tissues. The challenge is to keep these free DNA ends masked from the nucleolytic attacks that will readily operate on any DNA double-strand break in the cell, while also allowing the recruitment of telomerase at intervals. Specialized telomeric proteins, as well as DNA repair and checkpoint proteins with a dual role in telomere maintenance and DNA damage signaling/repair, protect the telomere ends from degradation and some of them also function in telomerase recruitment or other aspects of telomere length homeostasis. Phosphorylation of some telomeric proteins by checkpoint protein kinases appears to represent a mode of regulation of telomeric mechanisms. Finally, recent studies have allowed starting to understand the coupling between progression of the replication forks through telomeric regions and the subsequent telomere replication by telomerase, as well as retroaction of telomerase in cis on the firing of nearby replication origins.


Sujet(s)
Chromosomes/physiologie , Telomerase/métabolisme , Protéines télomériques/métabolisme , Télomère/physiologie , Animaux , Cycle cellulaire , Chromosomes/enzymologie , Altération de l'ADN , Humains , Recombinaison génétique , Rétroéléments/physiologie
13.
Mol Genet Genomics ; 277(6): 685-99, 2007 Jun.
Article de Anglais | MEDLINE | ID: mdl-17323081

RÉSUMÉ

Proteins involved in telomere end protection have previously been identified. In Saccharomyces cerevisiae, Cdc13, Yku and telomerase, mainly, prevent telomere uncapping, thus providing telomere stability and avoiding degradation and death by senescence. Here, we report that in the absence of Mrc1, a component of the replication forks, telomeres of cdc13 or yku70 mutants exhibited increased degradation, while telomerase-negative cells displayed accelerated senescence. Moreover, deletion of MRC1 increased the single-strandedness of the telomeres in cdc13-1 and yku70Delta mutant strains. An mrc1 deletion strain also exhibited slight but stable telomere shortening compared to a wild-type strain. Loss of Mrc1's checkpoint function alone did not provoke synthetic growth defects in combination with the cdc13-1 mutation. Combinations between the cdc13-1 mutation and deletion of either TOF1 or PSY2, coding for proteins physically interacting with Mrc1, also resulted in a synthetic growth defect. Thus, the present data suggest that non-essential components of the DNA replication machinery, such as Mrc1 and Tof1, may have a role in telomere stability in addition to their role in fork progression.


Sujet(s)
Protéines du cycle cellulaire/métabolisme , Protéines de liaison à l'ADN/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/métabolisme , Telomerase/métabolisme , Protéines télomériques/métabolisme , Télomère/métabolisme , Réplication de l'ADN , Délétion de gène , Mutation , Protéines nucléaires/métabolisme
14.
Nucleic Acids Res ; 35(3): 822-38, 2007.
Article de Anglais | MEDLINE | ID: mdl-17202155

RÉSUMÉ

Saccharomyces cerevisiae telomerase-negative cells undergo homologous recombination on subtelomeric or TG(1-3) telomeric sequences, thus allowing Type I or Type II post-senescence survival, respectively. Here, we find that the DNA damage sensors, Mec1, Mec3 and Rad24 control Type II recombination, while the Rad9 adaptor protein and the Rad53 and Chk1 effector kinases have no effect on survivor type selection. Therefore, the Mec1 and Mec3 checkpoint complexes control telomeric recombination independently of their roles in generating and amplifying the Mec1-Rad53-Chk1 kinase cascade. rfa1-t11 mutant cells, bearing a mutation in Replication Protein A (RPA) conferring a defect in recruiting Mec1-Ddc2, were also deficient in both types of telomeric recombination. Importantly, expression of an Rfa1-t11-Ddc2 hybrid fusion protein restored checkpoint-dependent arrest, but did not rescue defective telomeric recombination. Therefore, the Rfa1-t11-associated defect in telomeric recombination is not solely due to its failure to recruit Mec1. We have also isolated novel alleles of RFA1 that were deficient in Type I but not in Type II recombination and proficient in checkpoint control. Therefore, the checkpoint and recombination functions of RPA can be genetically separated, as can the RPA-mediated control of the two types of telomeric recombination.


Sujet(s)
Protéines du cycle cellulaire/physiologie , Protéines de liaison à l'ADN/physiologie , Protéines de Saccharomyces cerevisiae/physiologie , Saccharomyces cerevisiae/génétique , Télomère/composition chimique , Facteurs de transcription/physiologie , Protéines adaptatrices de la transduction du signal , Sites de fixation , Protéines du cycle cellulaire/génétique , Cycline B/métabolisme , Altération de l'ADN , Protéines de liaison à l'ADN/génétique , Délétion de gène , Protéines et peptides de signalisation intracellulaire , Mutation , Phosphoprotéines/génétique , Protein-Serine-Threonine Kinases , ARN/génétique , Protéine Rad52 de réparation-recombinaison de l'ADN/génétique , Protéine Rad52 de réparation-recombinaison de l'ADN/métabolisme , Protéines de fusion recombinantes/métabolisme , Recombinaison génétique , Protéine A de réplication/génétique , Protéine A de réplication/physiologie , Protéines de Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/métabolisme , Telomerase/génétique , Protéines télomériques/métabolisme , Facteurs de transcription/génétique
15.
Biol Cell ; 97(10): 799-814, 2005 Oct.
Article de Anglais | MEDLINE | ID: mdl-15760303

RÉSUMÉ

BACKGROUND INFORMATION: In budding yeast, the loss of either telomere sequences (in telomerase-negative cells) or telomere capping (in mutants of two telomere end-protection proteins, Cdc13 and Yku) lead, by distinct pathways, to telomeric senescence. After DNA damage, activation of Rad53, which together with Chk1 represents a protein kinase central to all checkpoint pathways, normally requires Rad9, a checkpoint adaptor. RESULTS: We report that in telomerase-negative (tlc1Delta) cells, activation of Rad53, although diminished, could still take place in the absence of Rad9. In contrast, Rad9 was essential for Rad53 activation in cells that entered senescence in the presence of functional telomerase, namely in senescent cells bearing mutations in telomere end-protection proteins (cdc13-1 yku70Delta). In telomerase-negative cells deleted for RAD9, Mrc1, another checkpoint adaptor previously implicated in the DNA replication checkpoint, mediated Rad53 activation. Rad9 and Rad53, as well as other DNA damage checkpoint proteins (Mec1, Mec3, Chk1 and Dun1), were required for complete DNA-damage-induced cell-cycle arrest after loss of telomerase function. However, unexpectedly, given the formation of an active Rad53-Mrc1 complex in tlc1Delta rad9Delta cells, Mrc1 did not mediate the cell-cycle arrest elicited by telomerase loss. Finally, we report that Rad9, Mrc1, Dun1 and Chk1 are activated by phosphorylation after telomerase inactivation. CONCLUSIONS: These results indicate that loss of telomere capping and loss of telomere sequences, both of which provoke telomeric senescence, are perceived as two distinct types of damages. In contrast with the Rad53-Rad9-mediated cell-cycle arrest that functions in a similar way in both types of telomeric senescence, activation of Rad53-Mrc1 might represent a specific response to telomerase inactivation and/or telomere shortening, the functional significance of which has yet to be uncovered.


Sujet(s)
Protéines du cycle cellulaire/métabolisme , Réplication de l'ADN/physiologie , ADN fongique/métabolisme , Gènes cdc/physiologie , Protéines de Saccharomyces cerevisiae/métabolisme , Saccharomyces cerevisiae/métabolisme , Télomère/métabolisme , Cycle cellulaire/physiologie , Protéines du cycle cellulaire/génétique , Activation enzymatique/physiologie , Saccharomyces cerevisiae/génétique , Protéines de Saccharomyces cerevisiae/génétique , Telomerase/déficit , Telomerase/métabolisme , Télomère/génétique
16.
Mol Cell Biol ; 23(24): 9162-77, 2003 Dec.
Article de Anglais | MEDLINE | ID: mdl-14645528

RÉSUMÉ

Telomerase-deficient mutants of Saccharomyces cerevisiae can survive death by senescence by using one of two homologous recombination pathways. The Rad51 pathway amplifies the subtelomeric Y' sequences, while the Rad50 pathway amplifies the telomeric TG(1-3) repeats. Here we show that telomerase-negative cells require Clb2 (the major B-type cyclin in this organism), in association with Cdc28 (Cdk1), to generate postsenescence survivors at a normal rate. The Rad50 pathway was more sensitive to the absence of Clb2 than the Rad51 pathway. We also report that telomerase RAD50 RAD51 triple mutants still generated postsenescence survivors. This novel Rad50- and Rad51-independent pathway of telomeric recombination also appeared to be controlled by Clb2. In telomerase-positive cells, a synthetic growth defect between mutations in CLB2 and RAD50 or in its partners in the conserved MRX complex, MRE11 and XRS2, was observed. This genetic interaction was independent of Mre11 nuclease activity but was dependent on a DNA repair function. The present data reveal an unexpected role of Cdc28/Clb2 in telomeric recombination during telomerase-independent maintenance of telomeres. They also uncover a functional interaction between Cdc28/Clb2 and MRX during the control of the mitotic cell cycle.


Sujet(s)
Cyclines/métabolisme , Endonucleases , Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/métabolisme , Télomère/génétique , Télomère/métabolisme , Protéine-kinase CDC2/métabolisme , Protéine-kinase CDC28 de S. cerevisiae/métabolisme , Cycline B/métabolisme , Protéines de liaison à l'ADN/métabolisme , Endodeoxyribonucleases/métabolisme , Exodeoxyribonucleases/métabolisme , Mitose , Recombinaison génétique , Saccharomyces cerevisiae/cytologie , Protéines de Saccharomyces cerevisiae/métabolisme , Telomerase/métabolisme
17.
Mol Cell Biol ; 23(11): 3721-34, 2003 Jun.
Article de Anglais | MEDLINE | ID: mdl-12748277

RÉSUMÉ

In the yeast Saccharomyces cerevisiae, Cdc13, Yku, and telomerase define three parallel pathways for telomere end protection that prevent chromosome instability and death by senescence. We report here that cdc13-1 yku70delta mutants generated telomere deprotection-resistant cells that, in contrast with telomerase-negative senescent cells, did not display classical crisis events. cdc13-1 yku70delta cells survived telomere deprotection by exclusively amplifying TG(1-3) repeats (type II recombination). In a background lacking telomerase (tlc1delta), this process predominated over type I recombination (amplification of subtelomeric Y' sequences). Strikingly, inactivation of the Rad50/Rad59 pathway (which is normally required for type II recombination) in cdc13-1 yku70delta or yku70delta tlc1delta mutants, but also in cdc13-1 YKU70(+) tlc1delta mutants, still permitted type II recombination, but this process was now entirely dependent on the Rad51 pathway. In addition, delayed senescence was observed in cdc13-1 yku70delta rad51delta and cdc13-1 tlc1delta rad51delta cells. These results demonstrate that in wild-type cells, masking by Cdc13 and Yku prevents the Rad51 pathway from amplifying telomeric TG(1-3) sequences. They also suggest that Rad51 is more efficient than Rad50 in amplifying the sequences left uncovered by the absence of Cdc13 or Yku70.


Sujet(s)
Protéines de liaison à l'ADN/métabolisme , Protéines de Saccharomyces cerevisiae/génétique , Saccharomyces cerevisiae/génétique , Telomerase/métabolisme , Protéines télomériques/génétique , Télomère/métabolisme , Survie cellulaire/physiologie , Vieillissement de la cellule/génétique , Vieillissement de la cellule/physiologie , Réparation de l'ADN , Rad51 Recombinase , Recombinaison génétique , Séquences répétées d'acides nucléiques , Saccharomyces cerevisiae/cytologie , Saccharomyces cerevisiae/métabolisme , Protéines de Saccharomyces cerevisiae/métabolisme , Protéines télomériques/métabolisme , Température
18.
Biol Cell ; 94(3): 127-37, 2002 Jun.
Article de Anglais | MEDLINE | ID: mdl-12206652

RÉSUMÉ

Schizosaccharomyces pombe represents a genetic model system for studying cell polarity and division in eukaryotes. We report here the identification of Mac1, a novel fission yeast protein that localized predominantly to the cell tips and septum. Sequences corresponding to roughly the first 180 amino acids of Mac1, which exhibited weak homology to the transmembrane domains of the Aspergillus Pall protein [Mol. Microbiol. 30 (1998) 259], were found to specify localization to the cell periphery. The other 574 amino acids of Mac1 localized to the cytoplasm when expressed alone, thus suggesting that the N-terminal part of Mac1 functions as a plasma membrane anchor for the rest of the protein. In pom1 null mutant cells, which never switch from unipolar to bipolar growth but, instead, grow exclusively at the randomly chosen end [Genes Dev. 12 (1998) 1356], Mac1 was, nevertheless, found at both poles, thus suggesting that Mac1 does not specifically localize to the sites of growth. mac1 null mutant cells had no overt phenotype at 22-32 degrees C, but, nevertheless, displayed a marked decrease in viability at 34-36 degrees C, accompanied by severe separation defects. Overexpression of mac1 resulted in similar defects. Our data suggest that a correct dosage of Mac1 is needed for correct cell separation at elevated temperatures of growth.


Sujet(s)
Compartimentation cellulaire/génétique , Division cellulaire/génétique , Membrane cellulaire/métabolisme , Polarité de la cellule/génétique , Protéines membranaires/isolement et purification , Protéines , Protéines de Schizosaccharomyces pombe/isolement et purification , Schizosaccharomyces/métabolisme , Membrane cellulaire/génétique , Taille de la cellule/génétique , Protéines de liaison à l'ADN/métabolisme , Régulation de l'expression des gènes fongiques/génétique , Protéines à fluorescence verte , Protéines luminescentes , Protéines membranaires/génétique , Mutation/génétique , Phénotype , Protein kinases/métabolisme , Structure tertiaire des protéines/génétique , Protéines de fusion recombinantes/génétique , Protéines de Saccharomyces cerevisiae , Schizosaccharomyces/cytologie , Schizosaccharomyces/génétique , Protéines de Schizosaccharomyces pombe/génétique , Similitude de séquences d'acides aminés , Similitude de séquences d'acides nucléiques , Température , Techniques de double hybride
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...