Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Nat Commun ; 12(1): 3841, 2021 06 22.
Article de Anglais | MEDLINE | ID: mdl-34158484

RÉSUMÉ

Aviation is an important contributor to the global economy, satisfying society's mobility needs. It contributes to climate change through CO2 and non-CO2 effects, including contrail-cirrus and ozone formation. There is currently significant interest in policies, regulations and research aiming to reduce aviation's climate impact. Here we model the effect of these measures on global warming and perform a bottom-up analysis of potential technical improvements, challenging the assumptions of the targets for the sector with a number of scenarios up to 2100. We show that although the emissions targets for aviation are in line with the overall goals of the Paris Agreement, there is a high likelihood that the climate impact of aviation will not meet these goals. Our assessment includes feasible technological advancements and the availability of sustainable aviation fuels. This conclusion is robust for several COVID-19 recovery scenarios, including changes in travel behaviour.


Sujet(s)
Aviation/statistiques et données numériques , COVID-19/épidémiologie , Changement climatique , Réchauffement de la planète , Emissions des véhicules/toxicité , Pollution de l'air/effets indésirables , COVID-19/transmission , COVID-19/virologie , Dioxyde de carbone/composition chimique , Humains , Ozone/composition chimique , Paris , SARS-CoV-2/isolement et purification
2.
Sci Total Environ ; 374(1): 167-81, 2007 Mar 01.
Article de Anglais | MEDLINE | ID: mdl-17287009

RÉSUMÉ

A simulation with the climate-chemistry model (CCM) E39/C is presented, which covers both the troposphere and stratosphere dynamics and chemistry during the period 1960 to 1999. Although the CCM, by its nature, is not exactly representing observed day-by-day meteorology, there is an overall model's tendency to correctly reproduce the variability pattern due to an inclusion of realistic external forcings, like observed sea surface temperatures (e.g. El Niño), major volcanic eruption, solar cycle, concentrations of greenhouse gases, and Quasi-Biennial Oscillation. Additionally, climate-chemistry interactions are included, like the impact of ozone, methane, and other species on radiation and dynamics, and the impact of dynamics on emissions (lightning). However, a number of important feedbacks are not yet included (e.g. feedbacks related to biogenic emissions and emissions due to biomass burning). The results show a good representation of the evolution of the stratospheric ozone layer, including the ozone hole, which plays an important role for the simulation of natural variability of tropospheric ozone. Anthropogenic NO(x) emissions are included with a step-wise linear trend for each sector, but no interannual variability is included. The application of a number of diagnostics (e.g. marked ozone tracers) allows the separation of the impact of various processes/emissions on tropospheric ozone and shows that the simulated Northern Hemisphere tropospheric ozone budget is not only dominated by nitrogen oxide emissions and other ozone pre-cursors, but also by changes of the stratospheric ozone budget and its flux into the troposphere, which tends to reduce the simulated positive trend in tropospheric ozone due to emissions from industry and traffic during the late 80s and early 90s. For tropical regions the variability in ozone is dominated by variability in lightning (related to ENSO) and stratosphere-troposphere exchange (related to Northern Hemisphere Stratospheric dynamics and solar activity). Since tropospheric background chemistry is regarded only, the results are quantitatively limited with respect to derived trends. However, the main results are regarded to be robust. Although the horizontal resolution is rather coarse in comparison to regional models, such kind of simulations provide useful and necessary information on the impact of large-scale processes and inter-annual/decadal variations on regional air quality.


Sujet(s)
Climat , Modèles théoriques , Ozone , Villes
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE