Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 19 de 19
Filtrer
1.
Article de Anglais | MEDLINE | ID: mdl-34206725

RÉSUMÉ

Epidemiologists and health geographers routinely use small-area survey estimates as covariates to model areal and even individual health outcomes. American Community Survey (ACS) estimates are accompanied by standard errors (SEs), but it is not yet standard practice to use them for evaluating or modeling data reliability. ACS SEs vary systematically across regions, neighborhoods, socioeconomic characteristics, and variables. Failure to consider probable observational error may have substantial impact on the large bodies of literature relying on small-area estimates, including inferential biases and over-confidence in results. The issue is particularly salient for predictive models employed to prioritize communities for service provision or funding allocation. Leveraging the tenets of plausible reasoning and Bayes' theorem, we propose a conceptual framework and workflow for spatial data analysis with areal survey data, including visual diagnostics and model specifications. To illustrate, we follow Krieger et al.'s (2018) call to routinely use the Index of Concentration at the Extremes (ICE) to monitor spatial inequalities in health and mortality. We construct and examine SEs for the ICE, use visual diagnostics to evaluate our observational error model for the ICE, and then estimate an ICE-mortality gradient by incorporating the latter model into our model of sex-specific, midlife (ages 55-64), all-cause United States county mortality rates. We urge researchers to consider data quality as a criterion for variable selection prior to modeling, and to incorporate data reliability information into their models whenever possible.


Sujet(s)
Pollution de l'air , Santé publique , Pollution de l'air/analyse , Théorème de Bayes , Femelle , Humains , Mâle , Adulte d'âge moyen , Reproductibilité des résultats , Enquêtes et questionnaires , États-Unis
2.
Article de Anglais | MEDLINE | ID: mdl-34068102

RÉSUMÉ

A research team collected 3609 useful soil samples across the city of Syracuse, NY; this data collection fieldwork occurred during the two consecutive summers (mid-May to mid-August) of 2003 and 2004. Each soil sample had fifteen heavy metals (As, Cr, Cu, Co, Fe, Hg, Mo, Mn, Ni, Pb, Rb, Se, Sr, Zn, and Zr), measured during its assaying; errors for these measurements are analyzed in this paper, with an objective of contributing to the geography of error literature. Geochemistry measurements are in milligrams of heavy metal per kilogram of soil, or ppm, together with accompanying analytical measurement errors. The purpose of this paper is to summarize and portray the geographic distribution of these selected heavy metals measurement errors across the city of Syracuse. Doing so both illustrates the value of the SAAR software's uncertainty mapping module and uncovers heavy metal characteristics in the geographic distribution of Syracuse's soil. In addition to uncertainty visualization portraying and indicating reliability information about heavy metal levels and their geographic patterns, SAAR also provides optimized map classifications of heavy metal levels based upon their uncertainty (utilizing the Sun-Wong separability criterion) as well as an optimality criterion that simultaneously accounts for heavy metal levels and their affiliated uncertainty. One major outcome is a summary and portrayal of the geographic distribution of As, Cr, Cu, Co, Fe, Hg, Mo, Mn, Ni, Pb, Rb, Se, Sr, Zn, and Zr measurement error across the city of Syracuse.


Sujet(s)
Métaux lourds , Polluants du sol , Chine , Villes , Surveillance de l'environnement , Métaux lourds/analyse , Reproductibilité des résultats , Sol , Polluants du sol/analyse , Incertitude
3.
J Appl Stat ; 47(7): 1168-1190, 2020.
Article de Anglais | MEDLINE | ID: mdl-35707029

RÉSUMÉ

Many phenomena exist in the space-time domain, often with a low data sampling rate and sparsely distributed network of observed points. Therefore, spatio-temporal interpolation with high accuracy is necessary. In this paper, a space-time regression-kriging model was introduced and applied to monthly average temperature data. First, a time series decomposition was applied for each station, and a multiple linear regression model was used to fit space-time trends. Second, a valid nonseparable spatio-temporal variogram function was utilized to describe similarities of the residuals in space-time. Finally, space-time kriging was applied to predict monthly air temperature. Jackknife techniques were used to predict the monthly temperature at all stations, with correlation coefficients between predictions and observed data very close to 1. Moreover, to evaluate the advantages of space-time kriging, pure time forecasting also was executed employing an autoregressive integrated moving average (ARIMA) model. The results of these two methods show that both mean absolute error (MAE) and root-mean-square error (RMSE) of space-time prediction are much lower than those of the pure time forecasting. The estimated temperature curves for stations also show that the former present a conspicuous improvement in interpolation accuracy when compared with the latter.

4.
Article de Anglais | MEDLINE | ID: mdl-33396823

RÉSUMÉ

Small areas refer to small geographic areas, a more literal meaning of the phrase, as well as small domains (e.g., small sub-populations), a more figurative meaning of the phrase. With post-stratification, even with big data, either case can encounter the problem of small local sample sizes, which tend to inflate local uncertainty and undermine otherwise sound statistical analyses. This condition is the opposite of that afflicting statistical significance in the context of big data. These two definitions can also occur jointly, such as during the standardization of data: small geographic units may contain small populations, which in turn have small counts in various age cohorts. Accordingly, big spatial data can become not-so-big spatial data after post-stratification by geography and, for example, by age cohorts. This situation can be ameliorated to some degree by the large volume of and high velocity of big spatial data. However, the variety of any big spatial data may well exacerbate this situation, compromising veracity in terms of bias, noise, and abnormalities in these data. The purpose of this paper is to establish deeper insights into big spatial data with regard to their uncertainty through one of the hallmarks of georeferenced data, namely spatial autocorrelation, coupled with small geographic areas. Impacts of interest concern the nature, degree, and mixture of spatial autocorrelation. The cancer data employed (from Florida for 2001-2010) represent a data category that is beginning to enter the realm of big spatial data; its volume, velocity, and variety are increasing through the widespread use of digital medical records.


Sujet(s)
Mégadonnées , Géographie , Analyse spatiale , Floride , Humains , Densité de population , Incertitude
5.
Article de Anglais | MEDLINE | ID: mdl-30380763

RÉSUMÉ

The geographic distribution of lung cancer rates tends to vary across a geographic landscape, and covariates (e.g., smoking rates, demographic factors, socio-economic indicators) commonly are employed in spatial analysis to explain the spatial heterogeneity of these cancer rates. However, such cancer risk factors often are not available, and conventional statistical models are unable to fully capture hidden spatial effects in cancer rates. Introducing random effects in the model specifications can furnish an efficient approach to account for variations that are unexplained due to omitted variables. Especially, a random effects model can be effective for a phenomenon that is static over time. The goal of this paper is to investigate geographic variation in Florida lung cancer incidence data for the time period 2000⁻2011 using random effects models. In doing so, a Moran eigenvector spatial filtering technique is utilized, which can allow a decomposition of random effects into spatially structured (SSRE) and spatially unstructured (SURE) components. Analysis results confirm that random effects models capture a substantial amount of variation in the cancer data. Furthermore, the results suggest that spatial pattern in the cancer data displays a mixture of positive and negative spatial autocorrelation, although the global map pattern of the random effects term may appear random.


Sujet(s)
Tumeurs du poumon/épidémiologie , Modèles statistiques , Floride/épidémiologie , Humains , Incidence , Facteurs de risque , Analyse spatiale
6.
J Vis Lang Comput ; 44: 89-96, 2018 Feb.
Article de Anglais | MEDLINE | ID: mdl-29503517

RÉSUMÉ

Geovisualization of attribute uncertainty helps users to recognize underlying processes of spatial data. However, it still lacks an availability of uncertainty visualization tools in a standard GIS environment. This paper proposes a framework for attribute uncertainty visualization by extending bivariate mapping techniques. Specifically, this framework utilizes two cartographic techniques, choropleth mapping and proportional symbol mapping based on the types of attributes. This framework is implemented as an extension of ArcGIS in which three types of visualization tools are available: overlaid symbols on a choropleth map, coloring properties to a proportional symbol map, and composite symbols.

7.
Environ Geochem Health ; 40(2): 667-681, 2018 Apr.
Article de Anglais | MEDLINE | ID: mdl-28791510

RÉSUMÉ

Lead poisoning produces serious health problems, which are worse when a victim is younger. The US government and society have tried to prevent lead poisoning, especially since the 1970s; however, lead exposure remains prevalent. Lead poisoning analyses frequently use georeferenced blood lead level data. Like other types of data, these spatial data may contain uncertainties, such as location and attribute measurement errors, which can propagate to analysis results. For this paper, simulation experiments are employed to investigate how selected uncertainties impact regression analyses of blood lead level data in Syracuse, New York. In these simulations, location error and attribute measurement error, as well as a combination of these two errors, are embedded into the original data, and then these data are aggregated into census block group and census tract polygons. These aggregated data are analyzed with regression techniques, and comparisons are reported between the regression coefficients and their standard errors for the error added simulation results and the original results. To account for spatial autocorrelation, the eigenvector spatial filtering method and spatial autoregressive specifications are utilized with linear and generalized linear models. Our findings confirm that location error has more of an impact on the differences than does attribute measurement error, and show that the combined error leads to the greatest deviations. Location error simulation results show that smaller administrative units experience more of a location error impact, and, interestingly, coefficients and standard errors deviate more from their true values for a variable with a low level of spatial autocorrelation. These results imply that uncertainty, especially location error, has a considerable impact on the reliability of spatial analysis results for public health data, and that the level of spatial autocorrelation in a variable also has an impact on modeling results.


Sujet(s)
Cartographie géographique , Plomb/sang , Santé publique , Incertitude , Enfant , Humains , Intoxication par le plomb/sang , Intoxication par le plomb/épidémiologie , Modèles linéaires , État de New York/épidémiologie
8.
PLoS Negl Trop Dis ; 7(7): e2342, 2013.
Article de Anglais | MEDLINE | ID: mdl-23936571

RÉSUMÉ

BACKGROUND: Recently, most onchocerciasis control programs have begun to focus on elimination. Developing an effective elimination strategy relies upon accurately mapping the extent of endemic foci. In areas of Africa that suffer from a lack of infrastructure and/or political instability, developing such accurate maps has been difficult. Onchocerciasis foci are localized near breeding sites for the black fly vectors of the infection. The goal of this study was to conduct ground validation studies to evaluate the sensitivity and specificity of a remote sensing model developed to predict S. damnosum s.l. breeding sites. METHODOLOGY/PRINCIPAL FINDINGS: Remote sensing images from Togo were analyzed to identify areas containing signature characteristics of S. damnosum s.l. breeding habitat. All 30 sites with the spectral signature were found to contain S. damnosum larvae, while 0/52 other sites judged as likely to contain larvae were found to contain larvae. The model was then used to predict breeding sites in Northern Uganda. This area is hyper-endemic for onchocerciasis, but political instability had precluded mass distribution of ivermectin until 2009. Ground validation revealed that 23/25 sites with the signature contained S. damnosum larvae, while 8/10 sites examined lacking the signature were larvae free. Sites predicted to have larvae contained significantly more larvae than those that lacked the signature. CONCLUSIONS/SIGNIFICANCE: This study suggests that a signature extracted from remote sensing images may be used to predict the location of S. damnosum s.l. breeding sites with a high degree of accuracy. This method should be of assistance in predicting communities at risk for onchocerciasis in areas of Africa where ground-based epidemiological surveys are difficult to implement.


Sujet(s)
Entomologie/méthodes , Technologie de télédétection/méthodes , Simuliidae/croissance et développement , Animaux , Écosystème , Humains , Sensibilité et spécificité , Togo , Ouganda
9.
Geo Spat Inf Sci ; 15(2): 117-133, 2012.
Article de Anglais | MEDLINE | ID: mdl-23504576

RÉSUMÉ

The standard methods for regression analyses of clustered riverine larval habitat data of Simulium damnosum s.l. a major black-fly vector of Onchoceriasis, postulate models relating observational ecological-sampled parameter estimators to prolific habitats without accounting for residual intra-cluster error correlation effects. Generally, this correlation comes from two sources: (1) the design of the random effects and their assumed covariance from the multiple levels within the regression model; and, (2) the correlation structure of the residuals. Unfortunately, inconspicuous errors in residual intra-cluster correlation estimates can overstate precision in forecasted S.damnosum s.l. riverine larval habitat explanatory attributes regardless how they are treated (e.g., independent, autoregressive, Toeplitz, etc). In this research, the geographical locations for multiple riverine-based S. damnosum s.l. larval ecosystem habitats sampled from 2 pre-established epidemiological sites in Togo were identified and recorded from July 2009 to June 2010. Initially the data was aggregated into proc genmod. An agglomerative hierarchical residual cluster-based analysis was then performed. The sampled clustered study site data was then analyzed for statistical correlations using Monthly Biting Rates (MBR). Euclidean distance measurements and terrain-related geomorphological statistics were then generated in ArcGIS. A digital overlay was then performed also in ArcGIS using the georeferenced ground coordinates of high and low density clusters stratified by Annual Biting Rates (ABR). This data was overlain onto multitemporal sub-meter pixel resolution satellite data (i.e., QuickBird 0.61m wavbands ). Orthogonal spatial filter eigenvectors were then generated in SAS/GIS. Univariate and non-linear regression-based models (i.e., Logistic, Poisson and Negative Binomial) were also employed to determine probability distributions and to identify statistically significant parameter estimators from the sampled data. Thereafter, Durbin-Watson test statistics were used to test the null hypothesis that the regression residuals were not autocorrelated against the alternative that the residuals followed an autoregressive process in AUTOREG. Bayesian uncertainty matrices were also constructed employing normal priors for each of the sampled estimators in PROC MCMC. The residuals revealed both spatially structured and unstructured error effects in the high and low ABR-stratified clusters. The analyses also revealed that the estimators, levels of turbidity and presence of rocks were statistically significant for the high-ABR-stratified clusters, while the estimators distance between habitats and floating vegetation were important for the low-ABR-stratified cluster. Varying and constant coefficient regression models, ABR- stratified GIS-generated clusters, sub-meter resolution satellite imagery, a robust residual intra-cluster diagnostic test, MBR-based histograms, eigendecomposition spatial filter algorithms and Bayesian matrices can enable accurate autoregressive estimation of latent uncertainity affects and other residual error probabilities (i.e., heteroskedasticity) for testing correlations between georeferenced S. damnosum s.l. riverine larval habitat estimators. The asymptotic distribution of the resulting residual adjusted intra-cluster predictor error autocovariate coefficients can thereafter be established while estimates of the asymptotic variance can lead to the construction of approximate confidence intervals for accurately targeting productive S. damnosum s.l habitats based on spatiotemporal field-sampled count data.

10.
Acta Trop ; 117(2): 61-8, 2011 Feb.
Article de Anglais | MEDLINE | ID: mdl-20969828

RÉSUMÉ

Marked spatiotemporal variabilities in mosquito infection of arboviruses require adaptive strategies for determining optimal field-sampling timeframes, pool screening, and data analyses. In particular, the error distribution and aggregation patterns of adult arboviral mosquitoes can vary significantly by species, which can statistically bias analyses of spatiotemporal-sampled predictor variables generating misinterpretation of prolific habitat surveillance locations. Currently, there is a lack of reliable and consistent measures of risk exposure based on field-sampled georeferenced explanatory covariates which can compromise quantitative predictions generated from arboviral mosquito surveillance models for implementing larval control strategies targeting productive habitats. In this research we used spatial statistics and QuickBird visible and near-infra-red data for determining trapping sites that were related to Culex quinquefasciatus and Aedes albopictus species abundance and distribution in Birmingham, Alabama. Initially, a Land Use Land Cover (LULC) model was constructed from multiple spatiotemporal-sampled georeferenced predictors and the QuickBird data. A Poisson regression model with a non-homogenous, gamma-distributed mean then decomposed the data into positive and negative spatial filter eigenvectors. An autoregressive process in the error term then was used to derive the sample distribution of the Moran's I statistic for determining latent autocorrelation components in the model. Spatial filter algorithms established means, variances, distributional functions, and pairwise correlations for the predictor variables. In doing so, the eigenfunction spatial filter quantified the residual autocorrelation error in the mean response term of the model as a linear combination of various distinct Cx. quinquefasciatus and Ae. albopictus habitat map patterns. The analyses revealed 18-27% redundant information in the data. Prolific habitats of Cx. quinquefasciatus and Ae. albopictus can be accurately spatially targeted based on georeferenced field-sampled count data using QuickBird data, LULC explanatory covariates, robust negative binomial regression estimates and space-time eigenfunctions.


Sujet(s)
Aedes/croissance et développement , Culex/croissance et développement , Écosystème , Alabama , Animaux , Systèmes d'information géographique , Géographie , Cartes comme sujet , Densité de population , Analyse de régression , Saisons
11.
Geospat Health ; 4(2): 201-17, 2010 May.
Article de Anglais | MEDLINE | ID: mdl-20503189

RÉSUMÉ

Spatial autocorrelation is problematic for classical hierarchical cluster detection tests commonly used in multi-drug resistant tuberculosis (MDR-TB) analyses as considerable random error can occur. Therefore, when MDRTB clusters are spatially autocorrelated the assumption that the clusters are independently random is invalid. In this research, a product moment correlation coefficient (i.e., the Moran's coefficient) was used to quantify local spatial variation in multiple clinical and environmental predictor variables sampled in San Juan de Lurigancho, Lima, Peru. Initially, QuickBird 0.61 m data, encompassing visible bands and the near infra-red bands, were selected to synthesize images of land cover attributes of the study site. Data of residential addresses of individual patients with smear-positive MDR-TB were geocoded, prevalence rates calculated and then digitally overlaid onto the satellite data within a 2 km buffer of 31 georeferenced health centers, using a 10 m2 grid-based algorithm. Geographical information system (GIS)-gridded measurements of each health center were generated based on preliminary base maps of the georeferenced data aggregated to block groups and census tracts within each buffered area. A three-dimensional model of the study site was constructed based on a digital elevation model (DEM) to determine terrain covariates associated with the sampled MDR-TB covariates. Pearson's correlation was used to evaluate the linear relationship between the DEM and the sampled MDR-TB data. A SAS/GIS(R) module was then used to calculate univariate statistics and to perform linear and non-linear regression analyses using the sampled predictor variables. The estimates generated from a global autocorrelation analyses were then spatially decomposed into empirical orthogonal bases using a negative binomial regression with a non-homogeneous mean. Results of the DEM analyses indicated a statistically non-significant, linear relationship between georeferenced health centers and the sampled covariate elevation. The data exhibited positive spatial autocorrelation and the decomposition of Moran's coefficient into uncorrelated, orthogonal map pattern components revealed global spatial heterogeneities necessary to capture latent autocorrelation in the MDR-TB model. It was thus shown that Poisson regression analyses and spatial eigenvector mapping can elucidate the mechanics of MDR-TB transmission by prioritizing clinical and environmental-sampled predictor variables for identifying high risk populations.


Sujet(s)
Analyse de regroupements , Tuberculose multirésistante/transmission , Algorithmes , Démographie , Écosystème , Systèmes d'information géographique , Géographie , Humains , Modèles statistiques , Analyse multifactorielle , Mycobacterium tuberculosis , Pérou/épidémiologie , Loi de Poisson , Prévalence , Études prospectives , Analyse de régression , Facteurs de risque , Statistiques comme sujet , Tuberculose multirésistante/épidémiologie
12.
Malar J ; 8: 216, 2009 Sep 21.
Article de Anglais | MEDLINE | ID: mdl-19772590

RÉSUMÉ

BACKGROUND: Autoregressive regression coefficients for Anopheles arabiensis aquatic habitat models are usually assessed using global error techniques and are reported as error covariance matrices. A global statistic, however, will summarize error estimates from multiple habitat locations. This makes it difficult to identify where there are clusters of An. arabiensis aquatic habitats of acceptable prediction. It is therefore useful to conduct some form of spatial error analysis to detect clusters of An. arabiensis aquatic habitats based on uncertainty residuals from individual sampled habitats. In this research, a method of error estimation for spatial simulation models was demonstrated using autocorrelation indices and eigenfunction spatial filters to distinguish among the effects of parameter uncertainty on a stochastic simulation of ecological sampled Anopheles aquatic habitat covariates. A test for diagnostic checking error residuals in an An. arabiensis aquatic habitat model may enable intervention efforts targeting productive habitats clusters, based on larval/pupal productivity, by using the asymptotic distribution of parameter estimates from a residual autocovariance matrix. The models considered in this research extends a normal regression analysis previously considered in the literature. METHODS: Field and remote-sampled data were collected during July 2006 to December 2007 in Karima rice-village complex in Mwea, Kenya. SAS 9.1.4 was used to explore univariate statistics, correlations, distributions, and to generate global autocorrelation statistics from the ecological sampled datasets. A local autocorrelation index was also generated using spatial covariance parameters (i.e., Moran's Indices) in a SAS/GIS database. The Moran's statistic was decomposed into orthogonal and uncorrelated synthetic map pattern components using a Poisson model with a gamma-distributed mean (i.e. negative binomial regression). The eigenfunction values from the spatial configuration matrices were then used to define expectations for prior distributions using a Markov chain Monte Carlo (MCMC) algorithm. A set of posterior means were defined in WinBUGS 1.4.3. After the model had converged, samples from the conditional distributions were used to summarize the posterior distribution of the parameters. Thereafter, a spatial residual trend analyses was used to evaluate variance uncertainty propagation in the model using an autocovariance error matrix. RESULTS: By specifying coefficient estimates in a Bayesian framework, the covariate number of tillers was found to be a significant predictor, positively associated with An. arabiensis aquatic habitats. The spatial filter models accounted for approximately 19% redundant locational information in the ecological sampled An. arabiensis aquatic habitat data. In the residual error estimation model there was significant positive autocorrelation (i.e., clustering of habitats in geographic space) based on log-transformed larval/pupal data and the sampled covariate depth of habitat. CONCLUSION: An autocorrelation error covariance matrix and a spatial filter analyses can prioritize mosquito control strategies by providing a computationally attractive and feasible description of variance uncertainty estimates for correctly identifying clusters of prolific An. arabiensis aquatic habitats based on larval/pupal productivity.


Sujet(s)
Anopheles/croissance et développement , Écosystème , Animaux , Humains , Kenya , Modèles statistiques , Oryza , Biais de sélection
13.
Environ Geochem Health ; 30(6): 495-509, 2008 Dec.
Article de Anglais | MEDLINE | ID: mdl-18566894

RÉSUMÉ

Properly sampling soils and mapping soil contamination in urban environments requires that impacts of spatial autocorrelation be taken into account. As spatial autocorrelation increases in an urban landscape, the amount of duplicate information contained in georeferenced data also increases, whether an entire population or some type of random sample drawn from that population is being analyzed, resulting in conventional power and sample size calculation formulae yielding incorrect sample size numbers vis-à-vis model-based inference. Griffith (in Annals, Association of American Geographers, 95, 740-760, 2005) exploits spatial statistical model specifications to formulate equations for estimating the necessary sample size needed to obtain some predetermined level of precision for an analysis of georeferenced data when implementing a tessellation stratified random sampling design, labeling this approach model-informed, since a model of latent spatial autocorrelation is required. This paper addresses issues of efficiency associated with these model-based results. It summarizes findings from a data collection exercise (soil samples collected from across Syracuse, NY), as well as from a set of resampling and from a set of simulation experiments following experimental design principles spelled out by Overton and Stehman (in Communications in Statistics: Theory and Methods, 22, 2641-2660). Guidelines are suggested concerning appropriate sample size (i.e., how many) and sampling network (i.e., where).


Sujet(s)
Surveillance de l'environnement/méthodes , Métaux lourds/analyse , Polluants du sol/analyse , Villes , Surveillance de l'environnement/normes , Géographie , Modèles théoriques , État de New York
14.
Environ Geochem Health ; 30(6): 597-611, 2008 Dec.
Article de Anglais | MEDLINE | ID: mdl-18566895

RÉSUMÉ

In the indoor environment, settled surface dust often functions as a reservoir of hazardous particulate contaminants. In many circumstances, a major contributing source to the dust pool is exterior soil. Young children are particularly susceptible to exposure to both outdoor derived soil and indoor derived dust present in the indoor dust pool. This is because early in life the exploratory activities of the infant are dominated by touching and mouthing behavior. Inadvertent exposure to dust through mouth contact and hand-to-mouth activity is an inevitable consequence of infant development. Clean-up of indoor dust is, in many circumstances, critically important in efforts to minimize pediatric exposure. In this study, we examine the efficiency of vacuum cleaner removal of footwear-deposited soil on vinyl floor tiles. The study utilized a 5 x 10 foot (c. 152.5 x 305 cm) test surface composed of 1-foot-square (c. 30.5 x 30.5 cm) vinyl floor tiles. A composite test soil with moderately elevated levels of certain elements (e.g., Pb) was repeatedly introduced onto the floor surface by footwear track-on. The deposited soil was subsequently periodically removed from randomly selected tiles using a domestic vacuum cleaner. The mass and loading of soil elements on the tiles following vacuuming were determined both by wet wipe collection and by subsequent chemical analysis. It was found that vacuum cleaner removal eliminated much of the soil mass from the floor tiles. However, a small percentage of the mass was not removed and a portion of this residual mass could be picked up by moistened hand-lifts. Furthermore, although the post-vacuuming tile soil mass was sizably reduced, for some elements (notably Pb) the concentration in the residual soil was increased. We interpret this increased metal concentration to be a particle size effect with smaller particles (with a proportionately higher metal content) remaining in situ after vacuuming.


Sujet(s)
Poussière/analyse , Polluants environnementaux/analyse , Ménage/normes , Surveillance de l'environnement , Polluants environnementaux/composition chimique , Taille de particule , Projets pilotes , Appréciation des risques , Propriétés de surface
15.
Ecology ; 87(10): 2603-13, 2006 Oct.
Article de Anglais | MEDLINE | ID: mdl-17089668

RÉSUMÉ

Recently, analytical approaches based on the eigenfunctions of spatial configuration matrices have been proposed in order to consider explicitly spatial predictors. The present study demonstrates the usefulness of eigenfunctions in spatial modeling applied to ecological problems and shows equivalencies of and differences between the two current implementations of this methodology. The two approaches in this category are the distance-based (DB) eigenvector maps proposed by P. Legendre and his colleagues, and spatial filtering based upon geographic connectivity matrices (i.e., topology-based; CB) developed by D. A. Griffith and his colleagues. In both cases, the goal is to create spatial predictors that can be easily incorporated into conventional regression models. One important advantage of these two approaches over any other spatial approach is that they provide a flexible tool that allows the full range of general and generalized linear modeling theory to be applied to ecological and geographical problems in the presence of nonzero spatial autocorrelation.


Sujet(s)
Écologie/méthodes , Géographie/méthodes , Modèles biologiques , Animaux , Mites (acariens)
16.
Sci Total Environ ; 370(2-3): 360-71, 2006 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-16962161

RÉSUMÉ

Inadvertent soil ingestion, especially by young children, can be an important route of exposure for many environmental contaminants. The introduction of exterior soil into the interior environment is a significant element of the exposure pathway. The unintentional collection of outside soil on footwear followed by subsequent deposition indoors is a principal route of soil ingress. Here we have investigated likely rates of dry and wet soil deposition on indoor hard surface flooring as a result of mass transfer from soiled footwear. In this pilot study, testing involved both single track-in events (with deposition resulting from a single progression of transfer steps) and multiple tracking actions (with deposition and dispersion resulting from repeated transfer steps). Based on soil mass recovery from the floor surface it was found that any contamination introduced by one-time track-in events was of limited spatial extent. In contrast, under repeated tracking conditions, with multiple soil incursions, widespread floor surface contamination was possible. Soil mass recovery was accomplished by brushing, by vacuum cleaner removal and by wet wiping. All the clean-up methods operated imperfectly and failed to remove all initially deposited soil. The level of floor surface soiling that resulted from the track-in tests, and the incomplete clean-up strongly suggest that under unrestricted transfer conditions rapid accumulation and dispersal of soil on indoor flooring is likely.


Sujet(s)
Poussière/analyse , Sols et revêtements , Sol/analyse , Exposition environnementale , Microscopie électronique à balayage , Taille de particule , Chaussures
17.
J Med Entomol ; 42(5): 751-5, 2005 Sep.
Article de Anglais | MEDLINE | ID: mdl-16365996

RÉSUMÉ

This research evaluates the extent to which use of environmental data acquired from field and satellite surveys enhances predictions of urban mosquito counts. Mosquito larval habitats were sampled, and multispectral thermal imager (MTI) satellite data in the visible spectrum at 5-m resolution were acquired for Kisumu and Malindi, Kenya, during February and March 2001. All entomological parameters were collected from January to May 2001, June to August 2002, and June to August 2003. In a Poisson model specification, for Anopheles funestus Giles, shade was the best predictor, whereas substrate was the best predictor for Anopheles gambiae, and vegetation for Anopheles arabensis Patton. The top predictors found with a logistic regression model specification were habitat size for An. gambiae Giles, pollution for An. arabensis, and shade for An. funestus. All other coefficients for canopy, debris, habitat nature, permanency, emergent plants, algae, pollution, turbidity, organic materials, all MTI waveband frequencies, distance to the nearest house, distance to the nearest domestic animal, and all land use land cover changes were nonsignificant. MTI data at 5-m spatial resolution do not have an additional predictive value for mosquito counts when adjusted for field-based ecological data.


Sujet(s)
Anopheles/physiologie , Environnement , Eau douce/parasitologie , Géographie/méthodes , Vecteurs insectes/physiologie , Animaux , Lutte contre les insectes/méthodes , Kenya , Larve/physiologie , Modèles logistiques , Modèles statistiques , Spécificité d'espèce
18.
Int J Health Geogr ; 4: 18, 2005 Aug 02.
Article de Anglais | MEDLINE | ID: mdl-16076391

RÉSUMÉ

West Nile Virus has quickly become a serious problem in the United States (US). Its extremely rapid diffusion throughout the country argues for a better understanding of its geographic dimensions. Both 2003 and 2004 percentages of deaths by numbers of reported human cases, for the 48 coterminous US states, are analyzed with a range of spatial statistical models, seeking to furnish a fuller appreciation of the variety of models available to researchers interested in analytical disease mapping. Comparative results indicate that no single spatial statistical model specification furnishes a preferred description of these data, although normal approximations appear to furnish some questionable implications. Findings also suggest several possible future research topics.

19.
Risk Anal ; 23(5): 945-60, 2003 Oct.
Article de Anglais | MEDLINE | ID: mdl-12969410

RÉSUMÉ

Geostatistics offers two fundamental contributions to environmental contaminant exposure assessment: (1) a group of methods to quantitatively describe the spatial distribution of a pollutant and (2) the ability to improve estimates of the exposure point concentration by exploiting the geospatial information present in the data. The second contribution is particularly valuable when exposure estimates must be derived from small data sets, which is often the case in environmental risk assessment. This article addresses two topics related to the use of geostatistics in human and ecological risk assessments performed at hazardous waste sites: (1) the importance of assessing model assumptions when using geostatistics and (2) the use of geostatistics to improve estimates of the exposure point concentration (EPC) in the limited data scenario. The latter topic is approached here by comparing design-based estimators that are familiar to environmental risk assessors (e.g., Land's method) with geostatistics, a model-based estimator. In this report, we summarize the basics of spatial weighting of sample data, kriging, and geostatistical simulation. We then explore the two topics identified above in a case study, using soil lead concentration data from a Superfund site (a skeet and trap range). We also describe several areas where research is needed to advance the use of geostatistics in environmental risk assessment.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...