Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
J Phys Chem Lett ; 14(6): 1418-1426, 2023 Feb 16.
Article de Anglais | MEDLINE | ID: mdl-36731025

RÉSUMÉ

After ionization of an inner-valence electron of molecules, the resulting cation-radicals store substantial internal energy which, if sufficient, can trigger ejection of an additional electron in an Auger decay usually followed by molecule fragmentation. In the environment, intermolecular Coulombic decay (ICD) and electron-transfer mediated decay (ETMD) are also operative, resulting in one or two electrons being ejected from a neighbor, thus preventing the fragmentation of the initially ionized molecule. These relaxation processes are investigated theoretically for prototypical heterocycle-water complexes of imidazole, pyrrole, and pyridine. It is found that the hydrogen-bonding site of the water molecule critically influences the nature and energetics of the electronic states involved, opening or closing certain relaxation processes of the inner-valence ionized system. Our results indicate that the relaxation mechanisms of biologically relevant systems with inner-valence vacancies on their carbon atoms can strongly depend on the presence of the electron-density donating or accepting neighbor, either water or another biomolecule.

2.
J Phys Chem Lett ; 13(19): 4272-4279, 2022 May 19.
Article de Anglais | MEDLINE | ID: mdl-35522820

RÉSUMÉ

Hydrogen bonds are ubiquitous in nature and of fundamental importance to the chemical and physical properties of molecular systems in the condensed phase. Nevertheless, our understanding of the structural and dynamical properties of hydrogen-bonded complexes in particular in electronic excited states remains very incomplete. Here, by using formic acid (FA) dimer as a prototype of DNA base pair, we investigate the ultrafast decay process initiated by removal of an electron from the inner-valence shell of the molecule upon electron-beam irradiation. Through fragment-ion and electron coincident momentum measurements and ab initio calculations, we find that de-excitation of an outer-valence electron at the same site can initiate ultrafast energy transfer to the neighboring molecule, which is in turn ionized through the emission of low-energy electrons. Our study reveals a concerted breaking of double hydrogen-bond in the dimer initiated by the ultrafast molecular rotations of two FA+ cations following this nonlocal decay mechanism.


Sujet(s)
Électrons , Formiates , Formiates/composition chimique , Hydrogène , Liaison hydrogène
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...