Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 89
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Phys Chem Chem Phys ; 26(3): 2692-2703, 2024 Jan 17.
Article de Anglais | MEDLINE | ID: mdl-38175663

RÉSUMÉ

Infrared messenger-tagging predissociation action spectroscopy (IRPD) is a well-established technique to record vibrational spectra of reactive molecular ions. One of its major drawbacks is that the spectrum of the messenger-ion complex is taken instead of that of the bare ion. In particular for small open-shell species, such as the Renner-Teller (RT) affected HCCH+ and DCCD+, the attachment of the tag may have a significant impact on the spectral features. Here we present the application of the novel leak-out spectroscopy (LOS) as a tag-free method to record the cis-bending of the HCCH+ (∼700 cm-1) and DCCD+ cations (∼520 cm-1), using a cryogenic ion trap end user station at the FELIX laboratory. We demonstrate that the obtained LOS spectrum is equivalent to a previously recorded laser-induced reactions (LIR) spectrum of HCCH+. The bending modes are the energetically lowest-lying vibrational modes targeted with LOS so far, showing its potential as a universal broadband spectroscopic technique. Furthermore, we have investigated the effect of the rare gas attachment by recording the vibrational spectra of Ne- and Ar-tagged HCCH+. We found that the Ne-attachment led to a shift in band positions and change in relative intensities, while the Ar-attachment even led to a complete quenching of the RT splitting, showing the importance of using a tag-free method for RT affected systems. The results are interpreted with the help of high-level ab initio calculations in combination with an effective Hamiltonian approach.

2.
J Chem Phys ; 159(16)2023 Oct 28.
Article de Anglais | MEDLINE | ID: mdl-37882337

RÉSUMÉ

Modeling environments that are not in local thermal equilibrium, such as protoplanetary disks or planetary atmospheres, with molecular spectroscopic data from space telescopes requires knowledge of the rate coefficients of rovibrationally inelastic molecular collisions. Here, we present such rate coefficients in a temperature range from 10 to 500 K for collisions of CO2 with He atoms in which CO2 is (de)excited in the bend mode. They are obtained from numerically exact coupled-channel (CC) calculations as well as from calculations with the less demanding coupled-states approximation (CSA) and the vibrational close-coupling rotational infinite-order sudden (VCC-IOS) method. All of the calculations are based on a newly calculated accurate ab initio four-dimensional CO2-He potential surface including the CO2 bend (ν2) mode. We find that the rovibrationally inelastic collision cross sections and rate coefficients from the CSA and VCC-IOS calculations agree to within 50% with the CC results at the rotational state-to-state level, except for the smaller ones and in the low energy resonance region, and to within 20% for the overall vibrational quenching rates except for temperatures below 50 K where resonances provide a substantial contribution. Our CC quenching rates agree with the most recent experimental data within the error bars. We also compared our results with data from Clary et al. calculated in the 1980s with the CSA [A. J. Banks and D. C. Clary, J. Chem. Phys. 86, 802 (1987)] and VCC-IOS [D. C. Clary, J. Chem. Phys. 78, 4915 (1983)] methods and a simple atom-atom model potential based on ab initio Hartree-Fock calculations and found that their cross sections agree fairly well with ours for collision energies above 500 cm-1, but that the inclusion of long range attractive dispersion interactions is crucial to obtain reliable cross sections at lower energies and rate coefficients at lower temperatures.

3.
Science ; 380(6640): 77-81, 2023 04 07.
Article de Anglais | MEDLINE | ID: mdl-37023184

RÉSUMÉ

Feshbach resonances are fundamental to interparticle interactions and become particularly important in cold collisions with atoms, ions, and molecules. In this work, we present the detection of Feshbach resonances in a benchmark system for strongly interacting and highly anisotropic collisions: molecular hydrogen ions colliding with noble gas atoms. The collisions are launched by cold Penning ionization, which exclusively populates Feshbach resonances that span both short- and long-range parts of the interaction potential. We resolved all final molecular channels in a tomographic manner using ion-electron coincidence detection. We demonstrate the nonstatistical nature of the final-state distribution. By performing quantum scattering calculations on ab initio potential energy surfaces, we show that the isolation of the Feshbach resonance pathways reveals their distinctive fingerprints in the collision outcome.

4.
Science ; 379(6636): 1031-1036, 2023 Mar 10.
Article de Anglais | MEDLINE | ID: mdl-36893253

RÉSUMÉ

Collisions between cold polar molecules represent a fascinating research frontier but have proven hard to probe experimentally. We report measurements of inelastic cross sections for collisions between nitric oxide (NO) and deuterated ammonia (ND3) molecules at energies between 0.1 and 580 centimeter-1, with full quantum state resolution. At energies below the ~100-centimeter-1 well depth of the interaction potential, we observed backward glories originating from peculiar U-turn trajectories. At energies below 0.2 centimeter-1, we observed a breakdown of the Langevin capture model, which we interpreted in terms of a suppressed mutual polarization during the collision, effectively switching off the molecular dipole moments. Scattering calculations based on an ab initio NO-ND3 potential energy surface revealed the crucial role of near-degenerate rotational levels with opposite parity in low-energy dipolar collisions.

5.
J Chem Phys ; 158(8): 084305, 2023 Feb 28.
Article de Anglais | MEDLINE | ID: mdl-36859081

RÉSUMÉ

The linear radical cation of cyanoacetylene, HC3N+ (2Π), is not only of astrophysical interest, being the, so far undetected, cationic counterpart of the abundant cyanoaceteylene, but also of fundamental spectroscopic interest due to its strong spin-orbit and Renner-Teller interactions. Here, we present the first broadband vibrational action spectroscopic investigation of this ion through the infrared pre-dissociation (IRPD) method using a Ne tag. Experiments have been performed using the FELion cryogenic ion-trap instrument in combination with the FELIX free-electron lasers and a Laservision optical parametric oscillator/optical parametric amplifier system. The vibronic splitting patterns of the three interacting bending modes (ν5, ν6, ν7), ranging from 180 to 1600 cm-1, could be fully resolved revealing several bands that were previously unobserved. The associated Renner-Teller and intermode coupling constants have been determined by fitting an effective Hamiltonian to the experimental data, and the obtained spectroscopic constants are in reasonable agreement with previous photoelectron spectroscopy (PES) studies and ab initio calculations on the HC3N+ ion. The influence of the attached Ne atom on the infrared spectrum has been investigated by ab initio calculations at the RCCSD(T)-F12a level of theory, which strongly indicates that the discrepancies between the IRPD and PES data are a result of the effects of the Ne attachment.

6.
Phys Rev Lett ; 129(24): 243401, 2022 Dec 09.
Article de Anglais | MEDLINE | ID: mdl-36563246

RÉSUMÉ

Ultracold molecules undergo "sticky collisions" that result in loss even for chemically nonreactive molecules. Sticking times can be enhanced by orders of magnitude by interactions that lead to nonconservation of nuclear spin or total angular momentum. We present a quantitative theory of the required strength of such symmetry-breaking interactions based on classical simulation of collision complexes. We find static electric fields as small as 10 V/cm can lead to nonconservation of angular momentum, while we find nuclear spin is conserved during collisions. We also compute loss of collision complexes due to spontaneous emission and absorption of black-body radiation, which are found to be slow.

8.
J Chem Phys ; 157(6): 064105, 2022 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-35963714

RÉSUMÉ

Astrophysical modeling of processes in environments that are not in local thermal equilibrium requires the knowledge of state-to-state rate coefficients of rovibrational transitions in molecular collisions. These rate coefficients can be obtained from coupled-channel (CC) quantum scattering calculations, which are very demanding, however. Here, we present various approximate but more efficient methods based on the coupled-states approximation (CSA), which neglects the off-diagonal Coriolis coupling in the scattering Hamiltonian in body-fixed coordinates. In particular, we investigated a method called NNCC (nearest-neighbor Coriolis coupling) [Yang et al., J. Chem. Phys. 148, 084101 (2018)] that includes Coriolis coupling to first order. The NNCC method is more demanding than the common CSA method but still much more efficient than full CC calculations, and it is substantially more accurate than CSA. All of this is illustrated by showing state-to-state cross sections and rate coefficients of rovibrational transitions induced in CO2 by collisions with He atoms. It is also shown that a further reduction of CPU time, practically without loss of accuracy, can be obtained by combining the NNCC method with the multi-channel distorted-wave Born approximation that we applied in full CC calculations in a previous paper.

9.
J Chem Phys ; 156(21): 214304, 2022 Jun 07.
Article de Anglais | MEDLINE | ID: mdl-35676127

RÉSUMÉ

We present a joint experimental and theoretical study of rotationally inelastic collisions between NO (X2Π1/2, ν = 0, j = 1/2, f) radicals and CO (X1Σ+, ν = 0, j = 0) molecules at a collision energy of 220 cm-1. State-to-state scattering images for excitation of NO radicals into various final states were measured with high resolution by combining the Stark deceleration and velocity map imaging techniques. The high image resolution afforded the observation of correlated rotational excitations of NO-CO pairs, which revealed a number of striking scattering phenomena. The so-called "parity-pair" transitions in NO are found to have similar differential cross sections, independent of the concurrent excitation of CO, extending this well-known effect for collisions between NO and rare gas atoms into the realm of bimolecular collisions. Forward scattering is found for collisions that induce a large amount of rotational energy transfer (in either NO, CO, or both), which require low impact parameters to induce sufficient energy transfer. This observation is interpreted in terms of the recently discovered hard collision glory scattering mechanism, which predicts the forward bending of initially backward receding trajectories if the energy uptake in the collision is substantial in relation to the collision energy. The experimental results are in good agreement with the predictions from coupled-channels quantum scattering calculations based on an ab initio NO-CO potential energy surface.

10.
Nat Chem ; 14(6): 664-669, 2022 06.
Article de Anglais | MEDLINE | ID: mdl-35315436

RÉSUMÉ

For molecular collisions, the deflection of a molecule's trajectory provides one of the most sensitive probes of the interaction potential and there are general rules of thumb that relate the direction of deflection to precollision conditions. Following intuition, forward scattering results from glancing collisions, whereas near head-on collisions result in back scattering. Here we present the observation of forward scattering in inelastic processes that defies this common wisdom. For deeply inelastic collisions between NO radicals and CO or HD molecules, we observed forward scattering in fully resolved pair-correlated differential cross-sections, despite the low impact parameters that are needed to induce a sufficient energy transfer. We rationalized these findings by extending the textbook model of hard-sphere scattering-taking inelastic energy transfer into account-and attribute the forward scattering to glory-type trajectories caused by attractive forces. This phenomenon, which we refer to as hard-collision glory scattering, is predicted to be ubiquitous. We derive under which conditions hard-collision glory scattering occurs and retrospectively identify such behaviour in previously studied systems.


Sujet(s)
Théorie quantique , Transfert d'énergie , Études rétrospectives
11.
Nat Chem ; 14(5): 538-544, 2022 May.
Article de Anglais | MEDLINE | ID: mdl-35210587

RÉSUMÉ

One of the most important parameters in a collision is the 'miss distance' or impact parameter, which in quantum mechanics is described by quantized partial waves. Usually, the collision outcome is the result of unavoidable averaging over many partial waves. Here we present a study of low-energy NO-He collisions that enables us to probe how individual partial waves evolve during the collision. By tuning the collision energies to scattering resonances between 0.4 and 6 cm-1, the initial conditions are characterized by a limited set of partial waves. By preparing NO in a rotationally excited state before the collision and by studying rotational de-excitation collisions, we were able to add one quantum of angular momentum to the system and trace how it evolves. Distinct fingerprints in the differential cross-sections yield a comprehensive picture of the partial wave dynamics during the scattering process. Exploiting the principle of detailed balance, we show that rotational de-excitation collisions probe time-reversed excitation processes with superior energy and angular resolution.

12.
ACS Earth Space Chem ; 5(8): 2032-2041, 2021 Aug 19.
Article de Anglais | MEDLINE | ID: mdl-34476319

RÉSUMÉ

Many different molecular species have been observed in the interstellar medium. These range from simple diatomic species to saturated organic molecules with several carbon atoms. The latter molecules are assumed to be formed predominantely on the surface of interstellar dust grains. All surface reactions that can proceed under the low interstellar temperatures are exothermic. Their exothermicity can be as high as a few electron volts, which is considerable compared to the thermal energy of the molecules at 10 K. It is postulated that this exothermicity can be used for the desorption of reaction products from the grain. In previous studies, we have shown that translational excitation can lead to desorption, whereas vibrational and rotational excitations are much less efficient in the desorption of surface products. Vibrational excitation is however much more likely upon bond formation than translational excitation. The present study follows energy dissipation upon translational, vibrational, or rotational excitation of admolecules on a surface and its conversion, or lack thereof, to different energy contributions. To this end, thousands of molecular dynamics simulations were performed with an admolecule on top of a surface that received a fixed amount of energy, vibrational, rotational, or translational. Three different surface species have been considered, CO2, H2O, and CH4, spanning a range in binding energies, the number of internal degrees of freedom, and molecular weights. A fast exchange of energy between vibrational stretches is observed, but only very limited exchange to rotational or translation excitation has been found. For the dissipation of energy to the surface, excitation of the surface-admolecule bond is critical. Astrochemical models often assume instantaneous equipartition of energy after a reaction process to estimate the amount of available energy for chemical desorption. Based on the present study, we conclude that this assumption is not justified.

13.
J Chem Phys ; 155(3): 034105, 2021 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-34293892

RÉSUMÉ

Modeling protoplanetary disks and other interstellar media that are not in local thermal equilibrium require the knowledge of rovibrational transition rate coefficients of molecules in collision with helium and hydrogen. We present a computational method based on the numerically exact coupled-channel (CC) method for rotational transitions and a multi-channel distorted-wave Born approximation (MC-DWBA) for vibrational transitions to calculate state-to-state rate coefficients. We apply this method to the astrophysically important case of CO2-He collisions, using newly computed ab initio three-dimensional potential energy surfaces for CO2-He with CO2 distorted along the symmetric and asymmetric stretch (ν1 and ν3) coordinates. It is shown that the MC-DWBA method is almost as accurate as full CC calculations, but more efficient. We also made computations with the more approximate vibrational coupled-channel rotational infinite-order sudden method but found that this method strongly underestimates the vibrationally inelastic collision cross sections and rate coefficients for both CO2 modes considered.

14.
J Chem Phys ; 153(24): 244302, 2020 Dec 28.
Article de Anglais | MEDLINE | ID: mdl-33380097

RÉSUMÉ

The experimental characterization of scattering resonances in low energy collisions has proven to be a stringent test for quantum chemistry calculations. Previous measurements on the NO-H2 system at energies down to 10 cm-1 challenged the most sophisticated calculations of potential energy surfaces available. In this report, we continue these investigations by measuring the scattering behavior of the NO-H2 system in the previously unexplored 0.4 cm-1-10 cm-1 region for the parity changing de-excitation channel of NO. We study state-specific inelastic collisions with both para- and ortho-H2 in a crossed molecular beam experiment involving Stark deceleration and velocity map imaging. We are able to resolve resonance features in the measured integral and differential cross sections. Results are compared to predictions from two previously available potential energy surfaces, and we are able to clearly discriminate between the two potentials. We furthermore identify the partial wave contributions to these resonances and investigate the nature of the differences between collisions with para- and ortho-H2. Additionally, we tune the energy spreads in the experiment to our advantage to probe scattering behavior at energies beyond our mean experimental limit.

15.
Nat Chem ; 12(6): 528-534, 2020 Jun.
Article de Anglais | MEDLINE | ID: mdl-32393824

RÉSUMÉ

Experimental developments continue to challenge the theoretical description of molecular interactions. One key arena in which these advances have taken place is in rotationally inelastic scattering. Electric fields have been used with great success to select the initial quantum state and slow molecules for scattering studies, revealing novel stereodynamics, diffraction oscillations and scattering resonances. These have enjoyed excellent agreement with quantum scattering calculations performed on state-of-the-art coupled-cluster potential energy surfaces. To date these studies have largely employed reactants in the ground vibrational state (v = 0) and the lowest low-field-seeking quantum state. Here we describe the use of stimulated emission pumping to prepare NO molecules in arbitrary single rotational and parity states of v = 10 for inelastic scattering studies. These are employed in a near-copropagating molecular beam geometry that permits the collision energy to be tuned from above room temperature to 1 K or below, with product differential cross-sections obtained by velocity map imaging. This extremely nonequilibrium condition, not found in nature, tests current theoretical methods in a new regime.

16.
Phys Chem Chem Phys ; 22(27): 15081-15104, 2020 Jul 21.
Article de Anglais | MEDLINE | ID: mdl-32458891

RÉSUMÉ

Resonance states are characterized by an energy that is above the lowest dissociation threshold of the potential energy hypersurface of the system and thus resonances have finite lifetimes. All molecules possess a large number of long- and short-lived resonance (quasibound) states. A considerable number of rotational-vibrational resonance states are accessible not only via quantum-chemical computations but also by spectroscopic and scattering experiments. In a number of chemical applications, most prominently in spectroscopy and reaction dynamics, consideration of rotational-vibrational resonance states is becoming more and more common. There are different first-principles techniques to compute and rationalize rotational-vibrational resonance states: one can perform scattering calculations or one can arrive at rovibrational resonances using variational or variational-like techniques based on methods developed for determining bound eigenstates. The latter approaches can be based either on the Hermitian (L2, square integrable) or non-Hermitian (non-L2) formalisms of quantum mechanics. This Perspective reviews the basic concepts related to and the relevance of shape and Feshbach-type rotational-vibrational resonance states, discusses theoretical methods and computational tools allowing their efficient determination, and shows numerical examples from the authors' previous studies on the identification and characterization of rotational-vibrational resonances of polyatomic molecular systems.

17.
Science ; 368(6491): 626-630, 2020 05 08.
Article de Anglais | MEDLINE | ID: mdl-32381720

RÉSUMÉ

At low energies, the quantum wave-like nature of molecular interactions results in distinctive scattering behavior, ranging from the universal Wigner laws near 0 kelvin to the occurrence of scattering resonances at higher energies. It has proven challenging to experimentally probe the individual waves underlying these phenomena. We report measurements of state-to-state integral and differential cross sections for inelastic NO-He collisions in the 0.2 to 8.5 centimeter-1 range with 0.02 centimeter-1 resolution. We studied the onset of the resonance regime by probing the lowest-lying resonance dominated by s and p waves only. The highly structured differential cross sections directly reflect the increasing number of contributing waves as the energy is increased. Only with CCSDT(Q) level of theory was it possible to reproduce our measurements.

18.
J Chem Phys ; 153(6): 064301, 2020 Aug 14.
Article de Anglais | MEDLINE | ID: mdl-35287454

RÉSUMÉ

We present a combined experimental and theoretical study of state-to-state inelastic collisions between NO (X 2Π1/2, j = 1/2, f) radicals and D2 (j = 0, 1, 2, 3) molecules at collision energies of 100 cm-1 and 750 cm-1. Using the combination of Stark deceleration and velocity map imaging, we fully resolve pair-correlated excitations in the scattered molecules. Both spin-orbit conserving and spin-orbit changing transitions in the NO radical are measured, while the coincident rotational excitation (j = 0 → j = 2) and rotational de-excitation (j = 2 → j = 0 and j = 3 → j = 1) in D2 are observed. De-excitation of D2 shows a strong dependence on the spin-orbit excitation of NO. We observe translation-to-rotation energy transfer as well as direct rotation-to-rotation energy transfer at the lowest collision energy probed. The experimental results are in good agreement with cross sections obtained from quantum coupled-channels calculations based on recent NO-D2 potential energy surfaces. The observed trends in the correlated scattering cross sections are understood in terms of the NO-D2 quadrupole-quadrupole interaction.

20.
Phys Rev Lett ; 123(12): 123402, 2019 Sep 20.
Article de Anglais | MEDLINE | ID: mdl-31633957

RÉSUMÉ

The lifetime of nonreactive ultracold bialkali gases was conjectured to be limited by sticky collisions amplifying three-body loss. We show that the sticking times were previously overestimated and do not support this hypothesis. We find that electronic excitation of NaK+NaK collision complexes by the trapping laser leads to the experimentally observed two-body loss. We calculate the excitation rate with a quasiclassical, statistical model employing ab initio potentials and transition dipole moments. Using longer laser wavelengths or repulsive box potentials may suppress the losses.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE