Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Cell Death Dis ; 13(9): 758, 2022 09 02.
Article de Anglais | MEDLINE | ID: mdl-36056008

RÉSUMÉ

Metastatic breast cancer cannot be cured, and alteration of fatty acid metabolism contributes to tumor progression and metastasis. Here, we were interested in the elongation of very long-chain fatty acids protein 5 (Elovl5) in breast cancer. We observed that breast cancer tumors had a lower expression of Elovl5 than normal breast tissues. Furthermore, low expression of Elovl5 is associated with a worse prognosis in ER+ breast cancer patients. In accordance with this finding, decrease of Elovl5 expression was more pronounced in ER+ breast tumors from patients with metastases in lymph nodes. Although downregulation of Elovl5 expression limited breast cancer cell proliferation and cancer progression, suppression of Elovl5 promoted EMT, cell invasion and lung metastases in murine breast cancer models. The loss of Elovl5 expression induced upregulation of TGF-ß receptors mediated by a lipid-droplet accumulation-dependent Smad2 acetylation. As expected, inhibition of TGF-ß receptors restored proliferation and dampened invasion in low Elovl5 expressing cancer cells. Interestingly, the abolition of lipid-droplet formation by inhibition of diacylglycerol acyltransferase activity reversed induction of TGF-ß receptors, cell invasion, and lung metastasis triggered by Elovl5 knockdown. Altogether, we showed that Elovl5 is involved in metastasis through lipid droplets-regulated TGF-ß receptor expression and is a predictive biomarker of metastatic ER+ breast cancer.


Sujet(s)
Tumeurs du sein , Fatty acid elongases/métabolisme , Tumeurs du poumon , Animaux , Tumeurs du sein/anatomopathologie , Lignée cellulaire tumorale , Régulation négative/génétique , Transition épithélio-mésenchymateuse , Femelle , Humains , Lipides , Tumeurs du poumon/génétique , Tumeurs du poumon/métabolisme , Souris , Métastase tumorale , Récepteurs TGF-bêta/métabolisme , Facteur de croissance transformant bêta/métabolisme
2.
Front Immunol ; 13: 875764, 2022.
Article de Anglais | MEDLINE | ID: mdl-35572581

RÉSUMÉ

Immunotherapy has allowed major advances in oncology in the past years, in particular with the development of immune checkpoint inhibitors, but the clinical benefits are still limited, particularly in colorectal cancer (CRC). Our scientific approach is based on the search for innovative immunotherapy with a final goal that aims to induce an effective antitumor immune response in CRC. Here, we focused on a multikinase inhibitor, H89. We carried out in vivo experiments based on syngeneic mouse models of colon cancer in BALB/c mice and chemically colon tumorigenesis. Flow cytometry, RNAseq, RT-qPCR, antibody-specific immune cell depletion, and Western blot were used to identify the immune cell type involved in the preventive and antitumor activity of H89. We demonstrated that H89 delays colon oncogenesis and prevents tumor growth. This latter effect seems to involve NK cells. H89 also inhibits colon tumor growth in a T-cell-dependent manner. Analysis of the immune landscape in the tumor microenvironment showed an increase of CD4+ Th1 cells and CD8+ cytotoxic T cells but a decrease of CD4+ Treg cell infiltration. Mechanistically, we showed that H89 could promote naïve CD4+ T-cell differentiation into Th1, a decrease in Treg differentiation, and an increase in CD8+ T-cell activation and cytotoxicity ex vivo. Furthermore, H89 induced overexpression of genes involved in antitumor immune response, such as IL-15RA, which depletion counteracts the antitumor effect of H89. We also found that H89 regulated Akt/PP2A pathway axis, involved in TCR and IL-15 signaling transduction. Our findings identify the H89 as a potential strategy for immune system activation leading to the prevention and treatment of CRC.


Sujet(s)
Tumeurs du côlon , Inhibiteurs de protéines kinases , Animaux , Tumeurs du côlon/thérapie , Inhibiteurs de points de contrôle immunitaires , Immunothérapie , Souris , Inhibiteurs de protéines kinases/pharmacologie , Microenvironnement tumoral
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...