Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 434
Filtrer
1.
Physiol Plant ; 176(4): e14423, 2024.
Article de Anglais | MEDLINE | ID: mdl-38945803

RÉSUMÉ

Maize (Zea mays L.) is an important food crop with a wide range of uses in both industry and agriculture. Drought stress during its growth cycle can greatly reduce maize crop yield and quality. However, the molecular mechanisms underlying maize responses to drought stress remain unclear. In this work, a WRKY transcription factor-encoding gene, ZmWRKY30, from drought-treated maize leaves was screened out and characterized. ZmWRKY30 gene expression was induced by dehydration treatments. The ZmWRKY30 protein localized to the nucleus and displayed transactivation activity in yeast. Compared with wild-type (WT) plants, Arabidopsis lines overexpressing ZmWRKY30 exhibited a significantly enhanced drought stress tolerance, as evidenced by the improved survival rate, increased antioxidant enzyme activity by superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), elevated proline content, and reduced lipid peroxidation recorded after drought stress treatment. In contrast, the mutator (Mu)-interrupted ZmWRKY30 homozygous mutant (zmwrky30) was more sensitive to drought stress than its null segregant (NS), characterized by the decreased survival rate, reduced antioxidant enzyme activity (SOD, POD, and CAT) and proline content, as well as increased malondialdehyde accumulation. RNA-Seq analysis further revealed that, under drought conditions, the knockout of the ZmWRKY30 gene in maize affected the expression of genes involved in reactive oxygen species (ROS), proline, and myo-inositol metabolism. Meanwhile, the zmwrky30 mutant exhibited significant downregulation of myo-inositol content in leaves under drought stress. Combined, our results suggest that ZmWRKY30 positively regulates maize responses to water scarcity. This work provides potential target genes for the breeding of drought-tolerant maize.


Sujet(s)
Sécheresses , Régulation de l'expression des gènes végétaux , Homéostasie , Inositol , Protéines végétales , Espèces réactives de l'oxygène , Zea mays , Zea mays/génétique , Zea mays/physiologie , Zea mays/métabolisme , Espèces réactives de l'oxygène/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Inositol/métabolisme , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme , Arabidopsis/génétique , Arabidopsis/physiologie , Végétaux génétiquement modifiés , Stress physiologique/génétique , Antioxydants/métabolisme , Feuilles de plante/génétique , Feuilles de plante/métabolisme , Feuilles de plante/physiologie , Résistance à la sécheresse
2.
Environ Sci Pollut Res Int ; 31(30): 42902-42920, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38884934

RÉSUMÉ

Land use changes have profoundly influenced global environmental dynamics. The Yellow River (YR), as the world's fifth-longest river, significantly contributes to regional social and economic growth due to its extensive drainage area, making it a key global player. To ensure ecological stability and coordinate land use demand, modeling the future land allocation patterns of the Yellow River Basin (YRB) will assist in striking a balance between land use functions and the optimization of its spatial design, particularly in water and sand management. In this research, we used a multi-objective genetic algorithm (MOGA) with the PLUS model to simulate several different futures for the YRB's land use between 1990 and 2020 and predict its spatial pattern in 2030. An analysis of the spatiotemporal evolution of land use changes in the YRB indicated that construction land expansion is the primary driver of landscape pattern and structure changes and ecological degradation, with climate change also contributing to the expansion of the watershed area. On the other hand, the multi-scenario simulation, constrained by specific targets, revealed that economic development was mainly reflected in land expansion for construction. At the same time, grassland and woodland were essential pillars to support the region's ecological health, and increasing the development of unused land emerged as a potential pathway towards sustainable development in the region. This study could be used as a template for the long-term growth of other large river basins by elucidating the impacts of human activities on land use and rationalizing land resource allocation under various policy constraints.


Sujet(s)
Conservation des ressources naturelles , Rivières , Modèles théoriques , Changement climatique , Chine
3.
ACS Appl Mater Interfaces ; 16(24): 31524-31533, 2024 Jun 19.
Article de Anglais | MEDLINE | ID: mdl-38841741

RÉSUMÉ

Metal-halide perovskite nanocrystals (NCs) are one of the most promising emitters for the application of display and nanolight sources. The full width at half-maximum (FWHM) of photoluminescence (PL) emission is essential for color purity, which however remains a difficulty to further reduce the FWHM of the perovskite NCs at room temperature. Here, we show the quasi-sphere perovskite NCs with narrow PL emission at a deep-blue wavelength of ∼430 nm; its PL FWHM reaches ∼11 nm at room temperature, owing to the monodispersion in size distribution as well as the symmetric quasi-sphere morphology of NCs releasing the fine structure splitting-induced inhomogeneous broadening. Through regulating A cations with respect to the ratio of FA (or MA)-to-Cs and Cs-to-Pb, the PL emission of the NCs could be tuned from ∼505 to ∼430 nm combined with varied morphologies from large cube to small quasi-sphere. Such spectroscopic and morphological discrepancies are supposed to be attributed to the different crystalline kinetics that is strongly dependent on the synthetic condition. To be specific, in the case of increasing FA (or MA)-to-Cs, the growth rate of CsPbBr3 and FAPbBr3 (or MAPbBr3) perovskites is determined by the reactivity of transient species, while in the case of decreasing the Cs-to-Pb ratio, the growth rate of perovskites is slowed down by the serious reduction of Cs+ in the precursor. This study provides an effective strategy to adjust the emission across from green to deep-blue color and promotes the perovskite NCs with a narrow FWHM, and tunable PL emission facilitates in application of optoelectronic devices.

4.
Plants (Basel) ; 13(11)2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38891305

RÉSUMÉ

Vaccinium duclouxii, a wild blueberry species native to the mountainous regions of southwestern China, is notable for its exceptionally high anthocyanin content, surpassing that of many cultivated varieties and offering significant research potential. Glutathione S-transferases (GSTs) are versatile enzymes crucial for anthocyanin transport in plants. Yet, the GST gene family had not been previously identified in V. duclouxii. This study utilized a genome-wide approach to identify and characterize the GST gene family in V. duclouxii, revealing 88 GST genes grouped into seven distinct subfamilies. This number is significantly higher than that found in closely related species, with these genes distributed across 12 chromosomes and exhibiting gene clustering. A total of 46 members are classified as tandem duplicates. The gene structure of VdGST is relatively conserved among related species, showing closer phylogenetic relations to V. bracteatum and evidence of purifying selection. Transcriptomic analysis and qRT-PCR indicated that VdGSTU22 and VdGSTU38 were highly expressed in flowers, VdGSTU29 in leaves, and VdGSTF11 showed significant expression in ripe and fully mature fruits, paralleling trends seen with anthocyanin accumulation. Subcellular localization identified VdGSTF11 primarily in the plasma membrane, suggesting a potential role in anthocyanin accumulation in V. duclouxii fruits. This study provides a foundational basis for further molecular-level functional analysis of the transport and accumulation of anthocyanins in V. duclouxii, enhancing our understanding of the molecular mechanisms underlying anthocyanin metabolism in this valuable species.

5.
J Appl Biomed ; 22(2): 99-106, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38912865

RÉSUMÉ

Resveratrol (RSV) is a polyphenol antioxidant that has been shown to have neuroprotective effects. We sought molecular mechanisms that emphasize the anti-inflammatory activity of RSV in traumatic brain injury (TBI) in mice associated with endoplasmic reticulum stress (ERS). After establishing three experimental groups (sham, TBI, and TBI+RSV), we explored the results of RSV after TBI on ERS and caspase-12 apoptotic pathways. The expression levels of C/EBP homologous protein (CHOP), glucose regulated protein 78kD (GRP78), caspase-3, and caspase-12 in cortical brain tissues were assessed by western blotting. The qPCR analysis was also performed on mRNA expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1ß in cortical brain tissue. In addition, the expression of GRP78 in microglia (ionized calcium binding adaptor molecule 1; Iba-1) and neurons (neuronal nuclei; NeuN) was identified by immunofluorescence staining. The neurological function of mice was assessed by modified neurological severity scores (mNSS). After drug treatment, the expression of CHOP, GRP78, caspase-3 and caspase-12 decreased, and qPCR results showed that TNF-α and IL-1ß were down-regulated. Immunofluorescence staining showed down-regulation of Iba-1+/GRP78+ and NeuN+/GRP78+ cells after RSV treatment. The mNSS analysis confirmed improvement after RSV treatment. RSV improved apoptosis by downregulating the ERS signaling pathway and improved neurological prognosis in mice with TBI.


Sujet(s)
Lésions traumatiques de l'encéphale , Chaperonne BiP du réticulum endoplasmique , Stress du réticulum endoplasmique , Resvératrol , Animaux , Lésions traumatiques de l'encéphale/traitement médicamenteux , Lésions traumatiques de l'encéphale/anatomopathologie , Lésions traumatiques de l'encéphale/métabolisme , Resvératrol/pharmacologie , Resvératrol/usage thérapeutique , Stress du réticulum endoplasmique/effets des médicaments et des substances chimiques , Souris , Mâle , Apoptose/effets des médicaments et des substances chimiques , Pronostic , Neuroprotecteurs/pharmacologie , Neuroprotecteurs/usage thérapeutique , Neurones/effets des médicaments et des substances chimiques , Neurones/anatomopathologie , Neurones/métabolisme , Interleukine-1 bêta/métabolisme , Interleukine-1 bêta/génétique , Caspase-12/métabolisme , Caspase-12/génétique , Protéines du choc thermique/métabolisme , Protéines du choc thermique/génétique , Facteur de nécrose tumorale alpha/métabolisme , Souris de lignée C57BL , Mort cellulaire/effets des médicaments et des substances chimiques , Microglie/effets des médicaments et des substances chimiques , Microglie/métabolisme , Microglie/anatomopathologie , Facteur de transcription CHOP/métabolisme , Facteur de transcription CHOP/génétique
6.
Biochem Pharmacol ; 225: 116267, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38723721

RÉSUMÉ

Acute liver failure (ALF) is a critical condition that can lead to substantial liver dysfunction. It is characterized by complex clinical manifestations and rapid progression, presenting significant challenges in diagnosis and treatment. We investigated the protective effect of mefunidone (MFD), a novel antifibrosis pyridone agent, on ALF in mice, and explored its potential mechanism of action. MFD pretreatment can alleviate lipopolysaccharide (LPS) and d-galactosamine (D-GalN)-induced ALF, reduce hepatocyte apoptosis, and reduce inflammation and oxidative stress. Additionally, MFD alleviated LPS/D-GalN-stimulated reactive oxygen species (ROS) production and cell death in AML12 cells. RNA sequencing enrichment analysis showed that MFD significantly affected the Mitogen-Activated Protein Kinase (MAPK) pathway. In vivo and in vitro experiments showed that MFD inhibited MKK4 and JNK phosphorylation. JNK activation caused by MKK4 and JNK activators could eliminate the therapeutic effect of MFD on AML12. In addition, MFD pretreatment alleviated ConA-induced ALF, reduced inflammation and oxidative stress in mice, and reduced mouse mortality. These results suggest that MFD can potentially protect against ALF, partially by inhibiting the MKK4-JNK pathway, and is a promising new therapeutic drug for ALF.


Sujet(s)
Défaillance hépatique aigüe , MAP Kinase Kinase 4 , Pipérazines , Pyridones , Animaux , Mâle , Souris , Lignée cellulaire , Galactosamine/toxicité , Lipopolysaccharides/toxicité , Défaillance hépatique aigüe/traitement médicamenteux , Défaillance hépatique aigüe/induit chimiquement , Défaillance hépatique aigüe/métabolisme , Défaillance hépatique aigüe/anatomopathologie , MAP Kinase Kinase 4/métabolisme , MAP Kinase Kinase 4/antagonistes et inhibiteurs , Système de signalisation des MAP kinases/effets des médicaments et des substances chimiques , Système de signalisation des MAP kinases/physiologie , Souris de lignée C57BL , Stress oxydatif/effets des médicaments et des substances chimiques , Pyridones/pharmacologie , Pyridones/usage thérapeutique , Pipérazines/pharmacologie , Pipérazines/usage thérapeutique
7.
Environ Pollut ; 356: 124266, 2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38821339

RÉSUMÉ

Aqueous calcium (Ca) decline is threatening freshwater ecosystems worldwide. There are great concerns about the possible ecological consequences of Ca limitation combined with biological pressures like predation. Here we investigated the interactions between Ca restriction and fish predation risk on the phenotypic plasticity in the keystone herbivore Daphnia, together with physiological responses underlying the plastic trait changes. Fish predation risk induced D. pulex to mature earlier and produce more but smaller offspring at adequate Ca. Declining Ca inhibited the expression of defensive traits, with the inhibitive degree showing a linear or threshold-limited dynamic. The presence of predation risk mitigated the negative effect of declining Ca on reducing body size but exacerbated the delay in maturity, indicating a life history trade-off for larger body size rather than the current reproduction in multi-stressed Daphnia. Actin 3-mediated cytoskeleton and AMPK ß-mediated energy metabolism were highly correlated with these plastic trait changes. Altered phenotypic plasticity in planktonic animals is expected to trigger many ecological impacts from individual fitness to community structure, thus providing new insights into the mechanisms underlying decreased Ca affecting lake ecosystems.

8.
Sci Adv ; 10(22): eadn7553, 2024 May 31.
Article de Anglais | MEDLINE | ID: mdl-38809970

RÉSUMÉ

Long-range ordered phases in most high-entropy and medium-entropy alloys (HEAs/MEAs) exhibit poor ductility, stemming from their brittle nature of complex crystal structure with specific bonding state. Here, we propose a design strategy to severalfold strengthen a single-phase face-centered cubic (fcc) Ni2CoFeV MEA by introducing trigonal κ and cubic L12 intermetallic phases via hierarchical ordering. The tri-phase MEA has an ultrahigh tensile strength exceeding 1.6 GPa and an outstanding ductility of 30% at room temperature, which surpasses the strength-ductility synergy of most reported HEAs/MEAs. The simultaneous activation of unusual dislocation multiple slip and stacking faults (SFs) in the κ phase, along with nano-SF networks, Lomer-Cottrell locks, and high-density dislocations in the coupled L12 and fcc phases, contributes to enhanced strain hardening and excellent ductility. This work offers a promising prototype to design super-strong and ductile structural materials by harnessing the hierarchical ordered phases.

9.
J Inflamm Res ; 17: 2531-2546, 2024.
Article de Anglais | MEDLINE | ID: mdl-38689798

RÉSUMÉ

Ferroptosis, a type of programmed cell death that relies on iron, is distinct in terms of its morphological, biochemical and genetic features. Unlike other forms of cell death, such as autophagy, apoptosis, necrosis, and pyroptosis, ferroptosis is primarily caused by lipid peroxidation. Cells that die due to iron can potentially trigger an immune response which intensifies inflammation and causes severe inflammatory reactions that eventually lead to multiple organ failure. In recent years, ferroptosis has been identified in an increasing number of medical fields, including neurological pathologies, chronic liver diseases and sepsis. Ferroptosis has the potential to cause an inflammatory tempest, with many of the catalysts and pathological indications of respiratory ailments being linked to inflammatory reactions. The growing investigation into ferroptosis in respiratory disorders has also garnered significant interest to better understand the mechanism of ferroptosis in these diseases. In this review, the recent progress in understanding the molecular control of ferroptosis and its mechanism in different respiratory disorders is examined. In addition, this review discusses current challenges and prospects for understanding the link between respiratory diseases and ferroptosis.

10.
Small ; : e2310455, 2024 Apr 29.
Article de Anglais | MEDLINE | ID: mdl-38682596

RÉSUMÉ

Organometal halide perovskite solar cells (PSCs) have received great attention owing to a rapid increase in power conversion efficiency (PCE) over the last decade. However, the deficit of long-term stability is a major obstacle to the implementation of PSCs in commercialization. The defects in perovskite films are considered as one of the primary causes. To address this issue, isocyanic acid (HNCO) is introduced as an additive into the perovskite film, in which the added molecules form covalent bonds with FA cations via a chemical reaction. This chemical reaction gives rise to an efficient passivation on the perovskite film, resulting in an improved film quality, a suppressed non-radiation recombination, a facilitated carrier transport, and optimization of energy band levels. As a result, the HNCO-based PSCs achieve a high PCE of 24.41% with excellent storage stability both in an inert atmosphere and in air. Different from conventional passivation methods based on coordination effects, this work presents an alternative chemical reaction for defect passivation, which opens an avenue toward defect-mitigated PSCs showing enhanced performance and stability.

11.
J Cell Mol Med ; 28(8): e18341, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38647235

RÉSUMÉ

Liver metastasis (LM) is an important factor leading to colorectal cancer (CRC) mortality. However, the effect of T-cell exhaustion on LM in CRC is unclear. Single-cell sequencing data derived from the Gene Expression Omnibus database. Data were normalized using the Seurat package and subsequently clustered and annotated into different cell clusters. The differentiation trajectories of epithelial cells and T cells were characterized based on pseudo-time analysis. Single-sample gene set enrichment analysis (ssGSEA) was used to calculate enrichment scores for different cell clusters and to identify enriched biological pathways. Finally, cell communication analysis was performed. Nine cell subpopulations were identified from CRC samples with LM. The proportion of T cells increased in LM. T cells can be subdivided into NK/T cells, regulatory T cells (Treg) and exhausted T cells (Tex). In LM, cell adhesion and proliferation activity of Tex were promoted. Epithelial cells can be categorized into six subpopulations. The transformation of primary CRC into LM involved two evolutionary branches of Tex cells. Epithelial cells two were at the beginning of the trajectory in CRC but at the end of the trajectory in CRC with LM. The receptor ligands CEACAM5 and ADGRE5-CD55 played critical roles in the interactions between Tex and Treg cell-epithelial cell, which may promote the epithelial-mesenchymal transition process in CRC. Tex cells are able to promote the process of LM in CRC, which in turn promotes tumour development. This provides a new perspective on the treatment and diagnosis of CRC.


Sujet(s)
Tumeurs colorectales , Tumeurs du foie , Analyse sur cellule unique , Humains , Tumeurs colorectales/anatomopathologie , Tumeurs colorectales/immunologie , Tumeurs colorectales/génétique , Tumeurs colorectales/métabolisme , Analyse sur cellule unique/méthodes , Tumeurs du foie/secondaire , Tumeurs du foie/immunologie , Tumeurs du foie/anatomopathologie , Tumeurs du foie/génétique , Lymphocytes T/immunologie , Lymphocytes T/métabolisme , Régulation de l'expression des gènes tumoraux , Lymphocytes T régulateurs/immunologie , Lymphocytes T régulateurs/métabolisme , Prolifération cellulaire , Analyse de profil d'expression de gènes , Cellules épithéliales/métabolisme , Cellules épithéliales/anatomopathologie , Communication cellulaire , Épuisement des cellules T
12.
Environ Sci Technol ; 58(17): 7577-7587, 2024 Apr 30.
Article de Anglais | MEDLINE | ID: mdl-38630542

RÉSUMÉ

The serotonin signaling system plays a crucial role in regulating the ontogeny of crustaceans. Here, we describe the effects of different concentrations of the 5-hydroxytryptamine 1A receptor antagonist (WAY-100635) on the induced antipredation (Rhodeus ocellatus as the predator), morphological, behavioral, and life-history defenses of Daphnia magna and use transcriptomics to analyze the underlying molecular mechanisms. Our results indicate that exposure to WAY-100635 leads to changes in the expression of different defensive traits in D. magna when faced with fish predation risks. Specifically, as the length of exposure to WAY-100635 increases, high concentrations of WAY-100635 inhibit defensive responses associated with morphological and reproductive activities but promote the immediate negative phototactic behavioral defense of D. magna. This change is related to the underlying mechanism through which WAY-100635 interferes with gene expression of G-protein-coupled GABA receptors by affecting GABBR1 but promotes serotonin receptor signaling and ecdysteroid signaling pathways. In addition, we also find for the first time that fish kairomone can significantly activate the HIF-1α signaling pathway, which may lead to an increase in the rate of immediate movement. These results can help assess the potential impacts of serotonin-disrupting psychotropic drugs on zooplankton in aquatic ecosystems.


Sujet(s)
Daphnia , Transcriptome , Animaux , Daphnia/effets des médicaments et des substances chimiques , Transcriptome/effets des médicaments et des substances chimiques , Comportement prédateur/effets des médicaments et des substances chimiques , Récepteur de la sérotonine de type 5-HT1A/métabolisme , Daphnia magna
13.
BMC Plant Biol ; 24(1): 296, 2024 Apr 17.
Article de Anglais | MEDLINE | ID: mdl-38632529

RÉSUMÉ

BACKGROUND: Calcium-dependent protein kinases (CPKs) are crucial for recognizing and transmitting Ca2+ signals in plant cells, playing a vital role in growth, development, and stress response. This study aimed to identify and detect the potential roles of the CPK gene family in the amphidiploid Brassica carinata (BBCC, 2n = 34) using bioinformatics methods. RESULTS: Based on the published genomic information of B. carinata, a total of 123 CPK genes were identified, comprising 70 CPK genes on the B subgenome and 53 on the C subgenome. To further investigate the homologous evolutionary relationship between B. carinata and other plants, the phylogenetic tree was constructed using CPKs in B. carinata and Arabidopsis thaliana. The phylogenetic analysis classified 123 family members into four subfamilies, where gene members within the same subfamily exhibited similar conserved motifs. Each BcaCPK member possesses a core protein kinase domain and four EF-hand domains. Most of the BcaCPK genes contain 5 to 8 introns, and these 123 BcaCPK genes are unevenly distributed across 17 chromosomes. Among these BcaCPK genes, 120 replicated gene pairs were found, whereas only 8 genes were tandem duplication, suggesting that dispersed duplication mainly drove the family amplification. The results of the Ka/Ks analysis indicated that the CPK gene family of B. carinata was primarily underwent purification selection in evolutionary selection. The promoter region of most BcaCPK genes contained various stress-related cis-acting elements. qRT-PCR analysis of 12 selected CPK genes conducted under cadmium and salt stress at various points revealed distinct expression patterns among different family members in response to different stresses. Specifically, the expression levels of BcaCPK2.B01a, BcaCPK16.B02b, and BcaCPK26.B02 were down-regulated under both stresses, whereas the expression levels of other members were significantly up-regulated under at least one stress. CONCLUSION: This study systematically identified the BcaCPK gene family in B. carinata, which contributes to a better understanding the CPK genes in this species. The findings also serve as a reference for analyzing stress responses, particularly in relation to cadmium and salt stress in B. carinata.


Sujet(s)
Brassica , Brassica/génétique , Phylogenèse , Cadmium/métabolisme , Famille multigénique , Génomique , Régulation de l'expression des gènes végétaux , Stress physiologique/génétique , Protéines végétales/génétique , Génome végétal
14.
Plants (Basel) ; 13(7)2024 Mar 25.
Article de Anglais | MEDLINE | ID: mdl-38611479

RÉSUMÉ

Acyl carrier proteins (ACPs) have been reported to play a crucial role in responding to biotic and abiotic stresses, regulating growth and development. However, the biological function of the ACP gene family in the Brassica genus has been limited until now. In this study, we conducted a comprehensive analysis and identified a total of 120 ACP genes across six species in the Brassica genus. Among these, there were 27, 26, and 30 ACP genes in the allotetraploid B. napus, B. juncea, and B. carinata, respectively, and 14, 13, and 10 ACP genes in the diploid B. rapa, B. oleracea, and B. nigra, respectively. These ACP genes were further classified into six subclades, each containing conserved motifs and domains. Interestingly, the majority of ACP genes exhibited high conservation among the six species, suggesting that the genome evolution and polyploidization processes had relatively minor effects on the ACP gene family. The duplication modes of the six Brassica species were diverse, and the expansion of most ACPs in Brassica occurred primarily through dispersed duplication (DSD) events. Furthermore, most of the ACP genes were under purifying selection during the process of evolution. Subcellular localization experiments demonstrated that ACP genes in Brassica species are localized in chloroplasts and mitochondria. Cis-acting element analysis revealed that most of the ACP genes were associated with various abiotic stresses. Additionally, RNA-seq data revealed differential expression levels of BnaACP genes across various tissues in B. napus, with particularly high expression in seeds and buds. qRT-PCR analysis further indicated that BnaACP genes play a significant role in salt stress tolerance. These findings provide a comprehensive understanding of ACP genes in Brassica plants and will facilitate further functional analysis of these genes.

15.
Plant Physiol Biochem ; 208: 108469, 2024 Mar.
Article de Anglais | MEDLINE | ID: mdl-38437752

RÉSUMÉ

Wheat is a vital food crop that faces threats from various abiotic and biotic stresses. Understanding the molecular mechanism of cadmium (Cd) resistance can provide valuable insights into the tolerance of wheat. Plant proteins known as Topless/Topless-Related (TPL/TPR) play a role in growth, development, defense regulation, and stress response. In this study, we identified TaTPR2 as being induced by Cd stress treatment. Upon Cd treatment, wheat plants overexpressing TaTPR2 exhibited better growth compared to wild-type (WT) plants. Moreover, the transgenic lines showed reduced accumulation of reactive oxygen species (ROS), along with significantly higher activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) compared to WT plants. Additionally, the transgenic lines exhibited lower levels of malondialdehyde (MDA) and electrolyte leakage compared to WT plants. Further analysis revealed that TabHLH41 directly binds to the E-box motif of the TaTPR2 promoter and positively regulates its expression. Overall, the overexpression of TaTPR2 in transgenic wheat resulted in reduced accumulation of Cd and ROS. These findings highlight the significance of the TabHLH41-TaTPR2 pathway as a crucial response to Cd stress in wheat.


Sujet(s)
Cadmium , Triticum , Espèces réactives de l'oxygène/métabolisme , Cadmium/métabolisme , Triticum/métabolisme , Antioxydants/métabolisme , Stress physiologique , Végétaux génétiquement modifiés/métabolisme , Protéines végétales/génétique , Protéines végétales/métabolisme , Régulation de l'expression des gènes végétaux
16.
Oncogene ; 43(20): 1506-1521, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38519641

RÉSUMÉ

Wnt/ß-catenin signalling is aberrantly activated in most colorectal cancer (CRC) and is one key driver involved in the initiation and progression of CRC. However, mutations of APC gene in CRC patients retain certain activity of APC protein with decreased ß-catenin signalling and DKK4 expression significantly upregulates and represses Wnt/ß-catenin signalling in human CRC tissues, suggesting that a precisely modulated activation of the Wnt/ß-catenin pathway is essential for CRC formation and progression. The underlying reasons why a specifically reduced degree, not a fully activating degree, of ß-catenin signalling in CRC are unclear. Here, we showed that a soluble extracellular inhibitor of Wnt/ß-catenin signalling, DKK4, is an independent factor for poor outcomes in CRC patients. DKK4 secreted from CRC cells inactivates ß-catenin in fibroblasts to induce the formation of stress fibre-containing fibroblasts and myofibroblasts in culture conditions and in mouse CRC xenograft tissues, resulting in restricted expansion in tumour masses at primary sites and enhanced CRC metastasis in mouse models. Reduced ß-catenin activity by a chemical inhibitor MSAB promoted the CRC metastasis. Our findings demonstrate why reduced ß-catenin activity is needed for CRC progression and provide a mechanism by which interactions between CRC cells and stromal cells affect disease promotion.


Sujet(s)
Tumeurs colorectales , Protéines et peptides de signalisation intercellulaire , Métastase tumorale , Voie de signalisation Wnt , bêta-Caténine , Tumeurs colorectales/anatomopathologie , Tumeurs colorectales/métabolisme , Tumeurs colorectales/génétique , Humains , Animaux , Protéines et peptides de signalisation intercellulaire/métabolisme , Protéines et peptides de signalisation intercellulaire/génétique , Souris , bêta-Caténine/métabolisme , bêta-Caténine/génétique , Fibroblastes/métabolisme , Fibroblastes/anatomopathologie , Lignée cellulaire tumorale , Mâle , Femelle , Souris nude
17.
Regen Biomater ; 11: rbae015, 2024.
Article de Anglais | MEDLINE | ID: mdl-38487713

RÉSUMÉ

The prognosis of glioblastoma (GBM) remains challenging, primarily due to the lack of a precise, effective imaging technique for comprehensively characterization. Addressing GBM diagnostic challenges, our study introduces an innovative dual-modal imaging that merges near-infrared (NIR) fluorescent imaging with magnetic resonance imaging (MRI). This method employs superparamagnetic iron oxide nanoparticles coated with NIR fluorescent dyes, specifically Cyanine 7, and targeted peptides. This synthetic probe facilitates MRI functionality through superparamagnetic iron oxide nanoparticles, provides NIR imaging capability via Cyanine 7 and enhances tumor targeting trough peptide interactions, offering a comprehensive diagnostic tool for GBM. Notably, the probe traverses the blood-brain barrier, targeting GBM in vivo via peptides, producing clear and discernible images in both modalities. Cytotoxicity and histopathology assessments confirm the probe's favorable safety profile. These findings suggest that the dual-modal MR\NIR fluorescent imaging probe could revolutionize GBM prognosis and survival rates, which can also be extended to other tumors type.

18.
Sci Total Environ ; 922: 171426, 2024 Apr 20.
Article de Anglais | MEDLINE | ID: mdl-38432363

RÉSUMÉ

Climate warming influences the biological activities of aquatic organisms, including feeding, growth, and reproduction, thereby affecting predator-prey interactions. This study explored the variation in thermal sensitivity of anti-predator responses in two cladoceran species with varying body sizes, Daphnia pulex and Ceriodaphnia cornuta. These species were cultured with or without the fish (Rhodeus ocellatus) kairomone at temperatures of 15, 20, 25, and 30 °C for 15 days. Results revealed that cladocerans of different body sizes exhibited varying responses to fish kairomones in aspects such as individual size, first-brood neonate size, total offspring number, average brood size, growth rate, and reproductive effort. Notably, low temperature differently affected defense responses in cladocerans of different body sizes. Both high and low temperatures moderated the intensity of the kairomone-induced response on body size at maturity. Additionally, low temperature reversed the reducing effect of fish kairomone on the total offspring number, average brood size, and reproductive effort in D. pulex. Conversely, it enhanced the increasing effect of fish kairomone on these parameters in C. cornuta. These results suggest that inducible anti-predator responses in cladocerans are modifiable by temperature. The differential effects of fish kairomones on various cladocerans under temperature influence offer crucial insights for predicting changes in predator-prey interactions within freshwater ecosystems under future climate conditions.


Sujet(s)
Cladocera , Cypriniformes , Animaux , Cladocera/physiologie , Daphnia , Écosystème , Phéromones/pharmacologie , Mensurations corporelles , Comportement prédateur
19.
BMC Pulm Med ; 24(1): 144, 2024 Mar 20.
Article de Anglais | MEDLINE | ID: mdl-38509541

RÉSUMÉ

BACKGROUND: The causality of the relationship between bronchiectasis and chronic obstructive pulmonary disease (COPD) remains unclear. This study aims to investigate the potential causal relationship between them, with a specific focus on the role of airway inflammation, infections, smoking as the mediators in the development of COPD. METHODS: We conducted a two-sample Mendelian randomization (MR) analysis to assess: (1) the causal impact of bronchiectasis on COPD, sex, smoking status, infections, eosinophil and neutrophil counts, as well as the causal impact of COPD on bronchiectasis; (2) the causal effect of smoking status, infections and neutrophil counts on COPD; and (3) the extent to which the smoking status, infections and neutrophil counts might mediate any influence of bronchiectasis on the development of COPD. RESULTS: COPD was associated with a higher risk of bronchiectasis (OR 1.28 [95% CI 1.05, 1.56]). Bronchiectasis was associated with a higher risk of COPD (OR 1.08 [95% CI 1.04, 1.13]), higher levels of neutrophil (OR 1.01 [95% CI 1.00, 1.01]), higher risk of respiratory infections (OR 1.04 [95% CI 1.02, 1.06]) and lower risk of smoking. The causal associations of higher neutrophil cells, respiratory infections and smoking with higher COPD risk remained after performing sensitivity analyses that considered different models of horizontal pleiotropy, with OR 1.17, 1.69 and 95.13, respectively. The bronchiectasis-COPD effect was 0.99, 0.85 and 122.79 with genetic adjustment for neutrophils, respiratory infections and smoking. CONCLUSION: COPD and bronchiectasis are mutually causal. And increased neutrophil cell count and respiratory infections appears to mediate much of the effect of bronchiectasis on COPD.


Sujet(s)
Dilatation des bronches , Broncho-pneumopathie chronique obstructive , Infections de l'appareil respiratoire , Humains , Granulocytes neutrophiles , Fumer/effets indésirables , Fumer/épidémiologie , Analyse de randomisation mendélienne , Dilatation des bronches/complications , Infections de l'appareil respiratoire/complications , Étude d'association pangénomique
20.
Plant Dis ; 2024 Mar 06.
Article de Anglais | MEDLINE | ID: mdl-38448391

RÉSUMÉ

Viburnum chinshanense, a deciduous shrub in the family Caprifoliaceae, is a dominant tree distributed mainly in the North-Central and South-Central regions of China (Zhu et al. 2023). Because of its lush white flowers and vibrant red fruits, V. chinshanense is used widely as ornamental tree in China. In May 2022, severe powdery mildew symptoms were observed on V. chinshanense on the Huaxi Campus of Guizhou Normal University, Guiyang, China. The incidence was approximately 75% among 80 V. chinshanense plants observed. White mycelia were present on both adaxial and abaxial leaf sides, but not on fruits, petioles, or stems. Infected leaves showed slight chlorosis and twisting. The mycelia were amphigenous, forming small-to-large patches, often sparse on the upper leaf surface, but mostly confluent on the lower leaf surface. Hyphae were hyaline, 4-7 µm wide. Hyphal appressoria were lobed to multilobed, in opposite pairs or solitary. Conidiophores were erect, straight, or somewhat flexuous, 60-130 µm long (n = 30). Foot cells were subcylindrical to slightly curved-sinuous at the base, 20-40 × 6-10 µm (n = 30) in size, followed by 1-3 shorter cells. Conidia formed singly, occasionally two to three in a chain. Conidia were ellipsoid to ovoid, cylindrical, and 24-40 × 16-20 µm (n = 50). No fibrosin bodies were observed on the conidia. Chasmothecia were subglobose, 56-115 µm in diameter. The appendages were 35-70 µm long. Based on these morphological characteristics, the powdery mildew fungus was identified as Erysiphe pseudoviburni (Bradshaw et al. 2020). To confirm the identification, the ribosomal DNA internal transcribed spacer (ITS) and the ribosomal large subunit (LSU) region were amplified and sequenced using the ITS1/ITS4 primer pair (White et al. 1990) and the NL1/NL4 primer pair (Ziemiecki et al. 1990), respectively. The obtained 643-bp ITS sequence (GenBank accession no. ON729292) had 99.84% identity with E. pseudoviburni strains KUS-F27310 (MN431595) and MUMH0001 (LC009904). The obtained 593-bp LSU sequence (ON729293) had 99.83% identity with E. pseudoviburni (LC009904 and MN431595). Based on the phylogenetic analysis of the combined ITS and LSU dataset (Bradshaw et al. 2020), the isolate (GZVD-1) was grouped in a clade with the E. pseudoviburni strains KUS-F27319, KUS-F27310, and MUMH0001. To fulfill Koch's postulates, leaves of three healthy potted V. chinshanense plants were inoculated by gently pressing with diseased leaves. Non-contact plants were used as controls. All plants were incubated in a greenhouse at 25 ± 2°C, 80% relative humidity. Similar powdery mildew symptoms were observed on the inoculated plants 12 days after inoculation, whereas the control plants remained symptomless. The reisolated fungus from the inoculated plants was morphologically identical to that on originally diseased plants. ITS and LSU sequences of the reisolated fungus showed 100% identity with ON729292 and ON729293, respectively. E. pseudoviburni has previously been reported to infect some Viburnum species, including V. sieboldii in Japan (Takamatsu et al. 2015) and V. odoratissimum in South Korea (Bradshaw et al. 2020). To the best of our knowledge, this is the first report of powdery mildew caused by E. pseudoviburni on V. chinshanense in China. This work expands the known host range of E. pseudoviburni in the Viburnum genus.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...