Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 921
Filtrer
1.
Artif Intell Med ; 154: 102929, 2024 Jul 04.
Article de Anglais | MEDLINE | ID: mdl-38996696

RÉSUMÉ

Explainability is key to enhancing the trustworthiness of artificial intelligence in medicine. However, there exists a significant gap between physicians' expectations for model explainability and the actual behavior of these models. This gap arises from the absence of a consensus on a physician-centered evaluation framework, which is needed to quantitatively assess the practical benefits that effective explainability should offer practitioners. Here, we hypothesize that superior attention maps, as a mechanism of model explanation, should align with the information that physicians focus on, potentially reducing prediction uncertainty and increasing model reliability. We employed a multimodal transformer to predict lymph node metastasis of rectal cancer using clinical data and magnetic resonance imaging. We explored how well attention maps, visualized through a state-of-the-art technique, can achieve agreement with physician understanding. Subsequently, we compared two distinct approaches for estimating uncertainty: a standalone estimation using only the variance of prediction probability, and a human-in-the-loop estimation that considers both the variance of prediction probability and the quantified agreement. Our findings revealed no significant advantage of the human-in-the-loop approach over the standalone one. In conclusion, this case study did not confirm the anticipated benefit of the explanation in enhancing model reliability. Superficial explanations could do more harm than good by misleading physicians into relying on uncertain predictions, suggesting that the current state of attention mechanisms should not be overestimated in the context of model explainability.

2.
Nat Commun ; 15(1): 5975, 2024 Jul 16.
Article de Anglais | MEDLINE | ID: mdl-39013854

RÉSUMÉ

Magnons, bosonic quasiparticles carrying angular momentum, can flow through insulators for information transmission with minimal power dissipation. However, it remains challenging to develop a magnon-based logic due to the lack of efficient electrical manipulation of magnon transport. Here we show the electric excitation and control of multiferroic magnon modes in a spin-source/multiferroic/ferromagnet structure. We demonstrate that the ferroelectric polarization can electrically modulate the magnon-mediated spin-orbit torque by controlling the non-collinear antiferromagnetic structure in multiferroic bismuth ferrite thin films with coupled antiferromagnetic and ferroelectric orders. In this multiferroic magnon torque device, magnon information is encoded to ferromagnetic bits by the magnon-mediated spin torque. By manipulating the two coupled non-volatile state variables-ferroelectric polarization and magnetization-we further present reconfigurable logic operations in a single device. Our findings highlight the potential of multiferroics for controlling magnon information transport and offer a pathway towards room-temperature voltage-controlled, low-power, scalable magnonics for in-memory computing.

3.
Biofabrication ; 16(4)2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39008993

RÉSUMÉ

Various anisotropic tissue structures exist in organisms, including muscle tissue, skin tissue, and nerve tissue. Replicating anisotropic tissue structuresin vitrohas posed a significant challenge. Three-dimensional (3D) printing technology is often used to fabricate biomimetic structures due to its advantages in manufacturing principle. However, direct 3D printing of freeform anisotropic bioactive structures has not been reported. To tackle this challenge, we developed a ternary F/G/P ink system that integrates the printability of Pluronic F127 (F), the robust bioactivity and photocrosslinking properties of gelatin methacryloyl (G), and the shear-induced alignment functionality of high-molecular-weight polyethylene glycol (P). And through this strategic ternary system combination, freeform anisotropic tissue structures can be 3D printed directly. Moreover, these anisotropic structures exhibit excellent bioactivity, and promote orientational growth of different cells. This advancement holds promise for the repair and replacement of anisotropic tissues within the human body.


Sujet(s)
Gélatine , Encre , Poloxamère , Impression tridimensionnelle , Structures d'échafaudage tissulaires , Anisotropie , Gélatine/composition chimique , Poloxamère/composition chimique , Humains , Structures d'échafaudage tissulaires/composition chimique , Ingénierie tissulaire , Polyéthylène glycols/composition chimique , Animaux , Matériaux biocompatibles/composition chimique , Matériaux biocompatibles/pharmacologie , Méthacrylates/composition chimique , Souris
4.
Nat Commun ; 15(1): 5899, 2024 Jul 13.
Article de Anglais | MEDLINE | ID: mdl-39003324

RÉSUMÉ

Challenges in direct catalytic oxidation of biomass-derived aldehyde and alcohol into acid with high activity and selectivity hinder the widespread biomass application. Herein, we demonstrate that a Pd/Ni(OH)2 catalyst with abundant Ni2+-O-Pd interfaces allows electrooxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid with a selectivity near 100 % and 2, 5-furandicarboxylic acid yield of 97.3% at 0.6 volts (versus a reversible hydrogen electrode) in 1 M KOH electrolyte under ambient conditions. The rate-determining step of the intermediate oxidation of 5-hydroxymethyl-2-furancarboxylic acid is promoted by the increased OH species and low C-H activation energy barrier at Ni2+-O-Pd interfaces. Further, the Ni2+-O-Pd interfaces prevent the agglomeration of Pd nanoparticles during the reaction, greatly improving the stability of the catalyst. In this work, Pd/Ni(OH)2 catalyst can achieve 100% 5-hydroxymethylfurfural conversion and >90% 2, 5-furandicarboxylic acid selectivity in a flow-cell and work stably over 200 h under a fixed cell voltage of 0.85 V.

5.
Prostate ; 2024 Jul 19.
Article de Anglais | MEDLINE | ID: mdl-39031050

RÉSUMÉ

BACKGROUND: There are no population-level studies assessing 18F-fluciclovine (fluciclovine) utilization of Positron emission tomography/computed tomography (PET/CT) for biochemically recurrent prostate cancer (PC). We assessed fluciclovine PET/CT in the Veterans Affairs Health Care System. METHODS: Of 1153 men with claims suggesting receipt of fluciclovine PET/CT, we randomly reviewed charts of 300 who indeed underwent fluciclovine PET/CT. The primary outcome was fluciclovine PET/CT result (positive or negative). Comparison among groups stratified by androgen deprivation therapy (ADT) (yes vs. no) and prostate-specific antigen (PSA) (≤1 vs. >1 ng/mL) at imaging were performed. Logistic regression tested associations between PSA, ADT receipt, and race with fluciclovine PET/CT positive imaging. RESULTS: Fluciclovine PET/CT positivity rate was 33% for patients with PSA 0-0.5 ng/mL, 21% for >0.5-1.0, 54% for >1.0-2.0, and 66% for >2.0 (p < 0.01). A 59% positivity rate ocurred in patients treated with concurrent ADT versus 37% in those not on ADT (p < 0.01). White were more likely to have a positive scan versus Black patients (55% vs. 38%; p = 0.02). Patients whose primary treatment was radical prostatectomy had a lower positivity rate (33%) versus those treated with radiotherapy (55%) (p < 0.001). On multivariable logistic regression, PSA > 1 ng/mL (all men odds ratio [OR]: 4.06, 95% confidence interval [CI]: 2.07-7.96; men on ADT only OR: 4.42, 95% CI: 1.73-11.26) and use of ADT (OR: 3.94, 95% CI: 1.32-11.75), and White (all men OR: 2.22, 95% CI: 1.20-4.17) predicted positive fluciclovine PET/CT. CONCLUSION: This real-world study assessing 18F-fluciclovine PET/CT performance in an equal access health care system confirms higher detection rates than traditional imaging methods, but positivity is highly influenced by PSA at time of imaging. Additionally, patients currently receiving ADT have at least four times higher likelihood of a positive scan, showing that scan positivity isn't negatively affected by ADT status in this study. Finally, White men were more likely to have a positive scan, the reasons for which should be explored in future studies.

7.
Natl Sci Rev ; 11(8): nwae107, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39007011

RÉSUMÉ

The magnetic correlations at the superconductor/ferromagnet (S/F) interfaces play a crucial role in realizing dissipation-less spin-based logic and memory technologies, such as triplet-supercurrent spin-valves and 'π' Josephson junctions. Here we report the observation of an induced large magnetic moment at high-quality nitride S/F interfaces. Using polarized neutron reflectometry and DC SQUID measurements, we quantitatively determined the magnetization profile of the S/F bilayer and confirmed that the induced magnetic moment in the adjacent superconductor only exists below T C. Interestingly, the direction of the induced moment in the superconductors was unexpectedly parallel to that in the ferromagnet, which contrasts with earlier findings in S/F heterostructures based on metals or oxides. First-principles calculations verified that the unusual interfacial spin texture observed in our study was caused by the Heisenberg direct exchange coupling with constant J∼4.28 meV through d-orbital overlapping and severe charge transfer across the interfaces. Our work establishes an incisive experimental probe for understanding the magnetic proximity behavior at S/F interfaces and provides a prototype epitaxial 'building block' for superconducting spintronics.

8.
Nano Lett ; 24(28): 8587-8594, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-38967395

RÉSUMÉ

Single-unit cell (1 UC) FeSe interfaced with TiOx or FeOx exhibits significantly enhanced superconductivity compared to that of bulk FeSe, with interfacial electron-phonon coupling (EPC) playing a crucial role. However, the reduced dimensionality in 1 UC FeSe, which may drive superconducting fluctuations, complicates our understanding of the enhancement mechanisms. We construct a new superconducting interface, 1 UC FeSe/SrVO3/SrTiO3. Here, the itinerant electrons of highly metallic SrVO3 films can screen all high-energy Fuchs-Kliewer phonons, including those of SrTiO3, making it the first FeSe/oxide system with screened interfacial EPC while maintaining the 1 UC FeSe thickness. Despite comparable doping levels, the heavily electron-doped 1 UC FeSe/SrVO3 exhibits a pairing temperature (Tg ∼ 48 K) lower than those of FeSe/SrTiO3 and FeSe/LaFeO3. Our findings disentangle the contributions of interfacial EPC from dimensionality in terms of enhancing Tg in FeSe/oxide interfaces, underscoring the critical importance of interfacial EPC. This FeSe/VOx interface also provides a platform for studying interfacial superconductivity.

9.
J Am Chem Soc ; 146(28): 19327-19336, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-38976776

RÉSUMÉ

An in situ formed IrOx (x ≤ 2) layer driven by anodic bias serves as the essential active site of Ir-based materials for oxygen evolution reaction (OER) electrocatalysis. Once being confined to atomic thickness, such an IrOx layer possesses both a favorable ligand effect and maximized active Ir sites with a lower O-coordination number. However, limited by a poor understanding of surface reconstruction dynamics, obtaining atomic layers of IrOx remains experimentally challenging. Herein, we report an idea of material design using intermetallic IrVMn nanoparticles to induce in situ formation of an ultrathin IrOx layer (O-IrVMn/IrOx) to enable the ligand effect for achieving superior OER electrocatalysis. Theoretical calculations predict that a strong electronic interaction originating from an orderly atomic arrangement can effectively hamper the excessive leaching of transition metals, minimizing vacancies for oxygen coordination. Linear X-ray absorption near edge spectra analysis, extended X-ray absorption fine structure fitting outcomes, and X-ray photoelectron spectroscopy collectively confirm that Ir is present in lower oxidation states in O-IrVMn/IrOx due to the presence of unsaturated O-coordination. Consequently, the O-IrVMn/IrOx delivers excellent acidic OER performances with an overpotential of only 279 mV at 10 mA cm-2 and a high mass activity of 2.3 A mg-1 at 1.53 V (vs RHE), exceeding most Ir-based catalysts reported. Moreover, O-IrVMn/IrOx also showed excellent catalytic stability with only 0.05 at. % Ir dissolution under electrochemical oxidation, much lower than that of disordered D-IrVMn/IrOx (0.20 at. %). Density functional theory calculations unravel that the intensified ligand effect optimizes the adsorption energies of multiple intermediates involved in the OER and stabilizes the as-formed catalytic IrOx layer.

10.
Adv Mater ; : e2408706, 2024 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-39016618

RÉSUMÉ

Electrolyte additives are efficient to improve the performance of aqueous zinc-ion batteries (AZIBs), yet the current electrolyte additives are limited to fully water-soluble additives (FWAs) and water-insoluble additives (WIAs). Herein, trace slightly water-soluble additives (SWAs) of zinc acetylacetonate (ZAA) were introduced to aqueous ZnSO4 electrolytes. The SWA system of ZAA is composed of a FWA part and a WIA part in a dynamic manner of dissolution equilibrium. The FWA part exists as soluble small molecules, which efficiently regulate Zn2+ ion solvation structure, while the WIA part exists as insoluble nano-colloids, which in-situ form a thick and robust solid electrolyte interface film on zinc metal anodes (ZMAs). Such small molecular/nano-colloidal multiscale electrolyte additives of ZAA are capable to not only improve ionic conductivity and transference number but also inhibit corrosion, hydrogen evolution, and Zn dendrite on ZMAs. The SWA-based Zn∥Zn half battery delivers a superb cumulative plating capacity of 15 Ah cm-2 under 1 mAh cm-2 and 20 mA cm-2, and the SWA-based NH4V4O10∥Zn pouch cell obtains a capacity retention of 67.8% within 4000 cycles under 4 A g-1. The study provides innovative insights for rational design of electrolyte additives, which may pave the way for the practicality of AZIBs.

11.
Sci Rep ; 14(1): 13715, 2024 06 14.
Article de Anglais | MEDLINE | ID: mdl-38877118

RÉSUMÉ

The risk of cholangitis after ERCP implantation in malignant obstructive jaundice patients remains unknown. To develop models based on artificial intelligence methods to predict cholangitis risk more accurately, according to patients after stent implantation in patients' MOJ clinical data. This retrospective study included 218 patients with MOJ undergoing ERCP surgery. A total of 27 clinical variables were collected as input variables. Seven models (including univariate analysis and six machine learning models) were trained and tested for classified prediction. The model' performance was measured by AUROC. The RFT model demonstrated excellent performances with accuracies up to 0.86 and AUROC up to 0.87. Feature selection in RF and SHAP was similar, and the choice of the best variable subset produced a high performance with an AUROC up to 0.89. We have developed a hybrid machine learning model with better predictive performance than traditional LR prediction models, as well as other machine learning models for cholangitis based on simple clinical data. The model can assist doctors in clinical diagnosis, adopt reasonable treatment plans, and improve the survival rate of patients.


Sujet(s)
Angiocholite , Apprentissage machine , Endoprothèses , Humains , Angiocholite/étiologie , Mâle , Femelle , Sujet âgé , Endoprothèses/effets indésirables , Études rétrospectives , Adulte d'âge moyen , Cholangiopancréatographie rétrograde endoscopique/effets indésirables , Ictère rétentionnel/étiologie , Ictère rétentionnel/chirurgie , Facteurs de risque , Sujet âgé de 80 ans ou plus , Appréciation des risques/méthodes
12.
Nat Commun ; 15(1): 5193, 2024 Jun 18.
Article de Anglais | MEDLINE | ID: mdl-38890366

RÉSUMÉ

Multichannel meta-imaging, inspired by the parallel-processing capability of neuromorphic computing, offers considerable advancements in resolution enhancement and edge discrimination in imaging systems, extending even into the mid- to far-infrared spectrum. Currently typical multichannel infrared imaging systems consist of separating optical gratings or merging multi-cameras, which require complex circuit design and heavy power consumption, hindering the implementation of advanced human-eye-like imagers. Here, we present printable graphene plasmonic photodetector arrays driven by a ferroelectric superdomain for multichannel meta-infrared imaging with enhanced edge discrimination. The fabricated photodetectors exhibited multiple spectral responses with zero-bias operation by directly rescaling the ferroelectric superdomain instead of reconstructing the separated gratings. We also demonstrated enhanced and faster shape classification (98.1%) and edge detection (98.2%) using our multichannel infrared images compared with single-channel detectors. Our proof-of-concept photodetector arrays simplify multichannel infrared imaging systems and offer potential solutions in efficient edge detection in human-brain-type machine vision.

13.
Nature ; 630(8018): 847-852, 2024 Jun.
Article de Anglais | MEDLINE | ID: mdl-38839959

RÉSUMÉ

The recent discovery of superconductivity in La3Ni2O7-δ under high pressure with a transition temperature around 80 K (ref. 1) has sparked extensive experimental2-6 and theoretical efforts7-12. Several key questions regarding the pairing mechanism remain to be answered, such as the most relevant atomic orbitals and the role of atomic deficiencies. Here we develop a new, energy-filtered, multislice electron ptychography technique, assisted by electron energy-loss spectroscopy, to address these critical issues. Oxygen vacancies are directly visualized and are found to primarily occupy the inner apical sites, which have been proposed to be crucial to superconductivity13,14. We precisely determine the nanoscale stoichiometry and its correlation to the oxygen K-edge spectra, which reveals a significant inhomogeneity in the oxygen content and electronic structure within the sample. The spectroscopic results also reveal that stoichiometric La3Ni2O7 has strong charge-transfer characteristics, with holes that are self-doped from Ni sites into O sites. The ligand holes mainly reside on the inner apical O and the planar O, whereas the density on the outer apical O is negligible. As the concentration of O vacancies increases, ligand holes on both sites are simultaneously annihilated. These observations will assist in further development and understanding of superconducting nickelate materials. Our imaging technique for quantifying atomic deficiencies can also be widely applied in materials science and condensed-matter physics.

14.
J Am Chem Soc ; 146(25): 17487-17494, 2024 Jun 26.
Article de Anglais | MEDLINE | ID: mdl-38865676

RÉSUMÉ

The redox transition between iron and its oxides is of the utmost importance in heterogeneous catalysis, biological metabolism, and geological evolution. The structural characteristics of this reaction may vary based on surrounding environmental conditions, giving rise to diverse physical scenarios. In this study, we explore the atomic-scale transformation of nanosized Fe3O4 under ambient-pressure H2 gas using in-situ environmental transmission electron microscopy. Our results reveal that the internal solid-state reactions dominated by iron diffusion are coupled with the surface reactions involving gaseous O or H species. During reduction, we observe two competitive reduction pathways, namely Fe3O4 → FeO → Fe and Fe3O4 → Fe. An intermediate phase with vacancy ordering is observed during the disproportionation reaction of Fe2+ → Fe0 + Fe3+, which potentially alleviates stress and facilitates ion migration. As the temperature decreases, an oxidation process occurs in the presence of environmental H2O and trace amounts of O2. A direct oxidation of Fe to Fe3O4 occurs in the absence of the FeO phase, likely corresponding to a change in the water vapor content in the atmosphere. This work elucidates a full dynamical scenario of iron redox under realistic conditions, which is critical for unraveling the intricate mechanisms governing the solid-solid and solid-gas reactions.

15.
Natl Sci Rev ; 11(7): nwae175, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38883296

RÉSUMÉ

Anisotropy is a significant and prevalent characteristic of materials, conferring orientation-dependent properties, meaning that the creation of original symmetry enables key functionality that is not found in nature. Even with the advancements in atomic machining, synthesis of separated symmetry in different directions within a single structure remains an extraordinary challenge. Here, we successfully fabricate NiS ultrafine nanorods with separated symmetry along two directions. The atomic structure of the nanorod exhibits rotational symmetry in the radial direction, while its axial direction is characterized by divergent translational symmetry, surpassing the conventional crystalline structures known to date. It does not fit the traditional description of the space group and the point group in three dimensions, so we define it as a new structure in which translational symmetry and rotational symmetry are separated. Further corroborating the atomic symmetric separation in the electronic structure, we observed the combination of stripe and vortex magnetic domains in a single nanorod with different directions, in accordance with the atomic structure. The manipulation of nanostructure at the atomic level introduces a novel approach to regulate new properties finely, leading to the proposal of new nanotechnology mechanisms.

16.
Nano Lett ; 2024 Jun 06.
Article de Anglais | MEDLINE | ID: mdl-38842462

RÉSUMÉ

The aggravated mechanical and structural degradation of layered oxide cathode materials upon high-voltage charging invariably causes fast capacity fading, but the underlying degradation mechanisms remain elusive. Here we report a new type of mechanical degradation through the formation of a kink band in a Mg and Ti co-doped LiCoO2 cathode charged to 4.55 V (vs Li/Li+). The local stress accommodated by the kink band can impede crack propagation, improving the structural integrity in a highly delithiated state. Additionally, machine-learning-aided atomic-resolution imaging reveals that the formation of kink bands is often accompanied by the transformation from the O3 to O1 phase, which is energetically favorable as demonstrated by first-principles calculations. Our results provide new insights into the mechanical degradation mechanism of high-voltage LiCoO2 and the coupling between electrochemically triggered mechanical failures and structural transition, which may provide valuable guidance for enhancing the electrochemical performance of high-voltage layered oxide cathode materials for lithium-ion batteries.

17.
Food Chem X ; 22: 101504, 2024 Jun 30.
Article de Anglais | MEDLINE | ID: mdl-38855097

RÉSUMÉ

The presence of veterinary drug residues in aquatic products represents a significant challenge to food safety. The current detection methods, limited in both scope and sensitivity, underscore the urgent need for more advanced techniques. This research introduces a swift and potent screening technique using high-performance liquid chromatography-high-resolution mass spectrometry (HPLC-HRMS) and a refined QuEChERS protocol, allowing simultaneous qualitative and semi-quantitative analysis of 192 residues. A comprehensive database, employing full scan mode and data-dependent secondary mass spectroscopy, enhances screening accuracy. The method involves efficient extraction using 90% acetonitrile, dehydration with Na2SO4, and acetic acid, followed by cleanup using dispersive solid-phase extract sorbent primary secondary amine. It is suitable for samples with varying fat content, offering detection limits ranging from 0.5 to 10 µg/kg, high recovery rates (60-120%), and low relative standard deviations (<20%). Practical application has validated its effectiveness for multi-residue screening, marking a significant advancement in food safety evaluation.

18.
Quantum Front ; 3(1): 12, 2024.
Article de Anglais | MEDLINE | ID: mdl-38855163

RÉSUMÉ

FeSe is one of the most enigmatic superconductors. Among the family of iron-based compounds, it has the simplest chemical makeup and structure, and yet it displays superconducting transition temperature ( T c ) spanning 0 to 15 K for thin films, while it is typically 8 K for single crystals. This large variation of T c within one family underscores a key challenge associated with understanding superconductivity in iron chalcogenides. Here, using a dual-beam pulsed laser deposition (PLD) approach, we have fabricated a unique lattice-constant gradient thin film of FeSe which has revealed a clear relationship between the atomic structure and the superconducting transition temperature for the first time. The dual-beam PLD that generates laser fluence gradient inside the plasma plume has resulted in a continuous variation in distribution of edge dislocations within a single film, and a precise correlation between the lattice constant and T c has been observed here, namely, T c ∝ c - c 0 , where c is the c-axis lattice constant (and c 0 is a constant). This explicit relation in conjunction with a theoretical investigation indicates that it is the shifting of the d xy orbital of Fe which plays a governing role in the interplay between nematicity and superconductivity in FeSe. Supplementary Information: The online version contains supplementary material available at 10.1007/s44214-024-00058-0.

19.
Nano Lett ; 24(21): 6269-6277, 2024 May 29.
Article de Anglais | MEDLINE | ID: mdl-38743874

RÉSUMÉ

Accurately decoding the three-dimensional atomic structure of surface active sites is essential yet challenging for a rational catalyst design. Here, we used comprehensive techniques combining the pair distribution function and reverse Monte Carlo simulation to reveal the surficial distribution of Pd active sites and adjacent coordination environment in palladium-copper nanoalloys. After the fine-tuning of the atomic arrangement, excellent catalytic performance with 98% ethylene selectivity at complete acetylene conversion was obtained in the Pd34Cu66 nanocatalysts, outperforming most of the reported advanced catalysts. The quantitative deciphering shows a large number of active sites with a Pd-Pd coordination number of 3 distributed on the surface of Pd34Cu66 nanoalloys, which play a decisive role in highly efficient semihydrogenation. This finding not only opens the way for guiding the precise design of bimetal nanocatalysts from atomic-level insight but also provides a method to resolve the spatial structure of active sites.

20.
Adv Mater ; : e2403674, 2024 May 24.
Article de Anglais | MEDLINE | ID: mdl-38794827

RÉSUMÉ

High-entropy alloys (HEAs) confine multifarious elements into the same lattice, leading to intense lattice distortion effect. The lattice distortion tends to induce local microstrain at atomic level and thus affect surface adsorptions toward different adsorbates in various electrocatalytic reactions, yet remains unexplored. Herein, this work reports a class of sub-2 nm IrRuRhMoW HEA nanoparticles (NPs) with distinct local microstrain induced by lattice distortion for boosting alkaline hydrogen oxidation (HOR) and evolution reactions (HER). This work demonstrates that the distortion-rich HEA catalysts with optimized electronic structure can downshift the d-band center and generate uncoordinated oxygen sites to enhance the surface oxophilicity. As a result, the IrRuRhMoW HEA NPs show a remarkable HOR kinetic current density of 8.09 mA µg-1 PGM at 50 mV versus RHE, 8.89, 22.47 times higher than those of IrRuRh NPs without internal strain and commercial Pt/C, respectively, which is the best value among all the reported non-Pt based catalysts. IrRuRhMoW HEA NPs also display great HER performances with a turnover frequency (TOF) value of 5.93 H2 s-1 at 70 mV versus RHE, 4.6-fold higher than that of Pt/C catalyst, exceeding most noble metal-based catalysts. Experimental characterizations and theoretical studies collectively confirm that weakened hydrogen (Had) and enhanced hydroxyl (OHad) adsorption are achieved by simultaneously modulating the hydrogen adsorption binding energy and surface oxophilicity originated from intensified ligand effect and microstrain effect over IrRuRhMoW HEA NPs, which guarantees the remarkable performances toward HOR/HER.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE