Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Front Microbiol ; 12: 734389, 2021.
Article de Anglais | MEDLINE | ID: mdl-34539619

RÉSUMÉ

The study investigated the impact of fermented cottonseed meal (FCSM) on growth performance, immunity and antioxidant properties, nutrient digestibility, and gut microbiota of weaned piglets by replacing soybean meal with FCSM in the diet. The experimental piglets were fed with either the soybean meal diet (SBM group) or fermented cottonseed meal diet (FCSM group) for 14days after weaning. The digestibility of dry matter (DM), organic matter (OM), crude protein (CP), gross energy (GE), amino acids and nitrogen was higher in the FCSM diet than those in the SBM diet (p<0.05). The piglets in the FCSM group showed greater growth performance and lower diarrhea rate than those in the SBM group (p<0.05). The concentration of serum immunoglobulin G (IgG) and antioxidase, intestinal and hepatic antioxidase were increased and the concentration of malondialdehyde (MDA) in the serum was decreased in those piglets in the FCSM group compared to those piglets in the SBM group (p<0.05). The piglets in the FCSM group had a higher concentration of volatile fatty acids (VFAs) in their ileum and cecum and a higher Simpson index of ileum than piglets in the SBM group (p<0.05). The relative abundance of Lactobacillus and [Ruminococcus]_torques_group in ileum and Intestinibacter, norank_f_Muribaculaceae, unclassified_o_Lactobacillales and [Eubacterium]_coprostanoligenes_group in cecum were enhanced in piglets fed with the FCSM diet, whereas the relative abundance of Sarcina and Terrisporobacter were increased in piglets fed with the SBM diet. Overall, FCSM replacing SBM improved the growth performance, immunity and antioxidant properties, and nutrient digestibility; possibly via the alterant gut microbiota and its metabolism of weaned piglets. Graphical AbstractFermented cottonseed meal as a partial replacement for soybean meal could improve the growth performance, immunity and antioxidant properties, and nutrient digestibility by altering the gut microbiota profile of weaned piglets. SBM, soybean meal; FCSM, fermented cottonseed meal.

2.
Sci Total Environ ; 800: 149596, 2021 Dec 15.
Article de Anglais | MEDLINE | ID: mdl-34426337

RÉSUMÉ

For the ruminant animal industry, the emission of nitrogenous substances, such as nitrous oxide (N2O) and ammonia (NH3), not only challenges environmental sustainability but also restricts its development. The metabolism of proteins and amino acids by rumen microorganisms is a key factor affecting nitrogen (N) excretion in ruminant animals. Rumen microorganisms that affect N excretion mainly include three types: proteolytic and peptidolytic bacteria (PPB), ureolytic bacteria (UB), and hyper-ammonia-producing bacteria (HAB). Microbes residing in the rumen, however, are influenced by several complex factors, such as diet, which results in fluctuations in the rumen metabolism of proteins and amino acids and ultimately affects N emission. Combining feed nutrition strategies (including ingredient adjustment and feed additives) and ecological mitigation strategies of N2O and NH3 in industrial practice can reduce the emission of nitrogenous pollutants from the ruminant breeding industry. In this review, the characteristics of the rumen microbial community related to N metabolism in ruminants were used as the metabolic basis. Furthermore, an effective strategy to increase N utilisation efficiency in combination with nutrition and ecology was reviewed to provide an inside-out approach to reduce N emissions from ruminants.


Sujet(s)
Azote , Rumen , Acides aminés , Aliment pour animaux/analyse , Animaux , Régime alimentaire , Ruminants
3.
Anim Nutr ; 7(1): 72-83, 2021 Mar.
Article de Anglais | MEDLINE | ID: mdl-33997334

RÉSUMÉ

This study investigated the effects of isomaltooligosaccharide (IMO) and Bacillus in perinatal diets on the duration of farrowing and post-weaning estrus, serum reproductive hormone concentrations, and gut microbiota and its metabolites of sows. Multiparous sows (n = 130) were fed diets without IMO (control, CON group), or diets containing only IMO (IMO group), IMO and Bacillus subtilis (IMOS group), IMO and Bacillus licheniformis (IMOL group), and IMO and B. subtilis and B. licheniformis (IMOSL group), respectively. The results indicate that the duration of farrowing and post-weaning estrus was shorter in sows in the IMOS, IMOL, and IMOSL groups, and the weaning-estrous interval was lower in sows in the IMOL greoup. In addition, the lowest fecal score was observed in the IMOL group during d 106 to 112 of gestation. Sows in most of the treatment groups had a higher concentration of serum prolactin and prostaglandin at farrowing, but a lower serum concentration of estradiol, oxytocin, and progesterone on d 18 of lactation than sows in the CON group. The treatment groups had a higher abundance of Candidatus Methanoplasma and Bacillus and a lower abundance of Escherichia-Shigella in their feces at farrowing. Furthermore, the treatment groups had higher concentrations of total short-chain fatty acids (SCFA) in feces at farrowing and a higher concentration of branched fatty acids in feces on d 18 of lactation. Furthermore, the abundance of Bacillus in feces was positively correlated with serum prostaglandin concentrations and fecal total SCFA of sows at farrowing, but was negatively correlated with the duration of farrowing. Overall, dietary IMO and Bacillus supplementation affected the concentration of serum reproductive hormones and the duration of farrowing and post-weaning estrus, and the gut microbiota is a key factor.

4.
Front Microbiol ; 11: 593056, 2020.
Article de Anglais | MEDLINE | ID: mdl-33324372

RÉSUMÉ

The study investigated the impact of dietary montmorillonite on the growth performance, intestinal mucosal barrier, and microbial community in weaned piglets with control group (CON) and dietary supplementation of 0.2% montmorillonite (0.2% M). Compared with the CON group, 0.2% M feed in the diet increased the average daily gain (ADG) on days 15-35 and day 1-35 and the average daily feed intake on days 1-35 (ADFI) (0.05 < P < 0.1). Besides, higher villus height of the duodenum and jejunum and lower crypt depth of duodenum and colon were revealed in the 0.2% M group than in the CON group (P < 0.05). Moreover, the V/C (ratio of the villus height and crypt depth) in the 0.2% M group was increased compared to that in the CON group both from the duodenum and ileum (P < 0.05). The relative mRNA expression of mucin-1, ITGB1 (ß1-integrins), and PKC (protein kinase C) of ileum in the 0.2% M group were upregulated (P < 0.05) compared to that in the CON group. The digesta sample of ileum from piglets in the 0.2% M group contained greater (P < 0.05) intestinal bacterial diversity and abundances of probiotics, such as Streptococcus, Eubacterium_rectale_group, and Lactobacillus, which could promote the synthesis of carbon-containing biomolecules. Overall, dietary supplementation of 0.2% M was shown to have a tendency to improve the growth performance of weaned piglets and may enhance their intestinal mucosal barrier function via altering the gut microbiota.

5.
Anim Reprod Sci ; 219: 106531, 2020 Aug.
Article de Anglais | MEDLINE | ID: mdl-32828406

RÉSUMÉ

In this study there was evaluation of effects of dietary inulin during late gestation on sow physiology, farrowing duration and piglet performance. At day 80 of gestation sows were randomly assigned to four groups:basal diet (CON); or basal diet with 0.8 %; 1.6 %; or 2.4 % inulin. The feeding of the diet with 1.6 % inulin resulted in larger weights of the litter at birth a shorter duration of the farrowing period, lesser average birth interval between piglets, lesser number of piglets dead at birth, and fewer piglets/sow dead at birth (P < 0.05). When sows were fed 0.8 % and 1.6 % IN, there was a larger litter weight at weaning, sow average daily feed intake and piglet average daily gain during lactation compared with values for these variables in the CON group (P <  0.05). Additionally, there was an increase in serum concentration of free fatty acid, total cholesterol, and high-density lipoprotein cholesterol with increasing amounts of inulin in the diet (linear, P <  0.05). Sows fed 1.6 % IN had greater serum concentrations of glucose than those in the CON group (P <  0.05). Furthermore, there was a linear increase in serum activity of total antioxidant capacity, total superoxide dismutase and glutathione peroxidase with increasing amounts of inulin in the diet (P <  0.05). In conclusion, results of the present study indicated feeding inulin during late gestation improved reproductive performance of sows, thus, may be a novel additive for the pig industry in improving efficiency of pork production.


Sujet(s)
Animaux nouveau-nés/croissance et développement , Inuline/pharmacologie , Parturition/effets des médicaments et des substances chimiques , Gestation animale , Suidae/physiologie , Aliment pour animaux , Phénomènes physiologiques nutritionnels chez l'animal/effets des médicaments et des substances chimiques , Animaux , Composition corporelle/effets des médicaments et des substances chimiques , Régime alimentaire , Compléments alimentaires , Femelle , Âge gestationnel , Lactation/physiologie , Taille de la portée/effets des médicaments et des substances chimiques , Phénomènes physiologiques nutritionnels maternels/effets des médicaments et des substances chimiques , Grossesse , Gestation animale/effets des médicaments et des substances chimiques , Sevrage
6.
Front Microbiol ; 11: 588986, 2020.
Article de Anglais | MEDLINE | ID: mdl-33488538

RÉSUMÉ

To investigate the effects of dietary isomaltooligosaccharide (IMO) levels on the gut microbiota, immune function of sows, and the diarrhea rate of their offspring, 120 multiparous gestating pig improvement company (PIC) sows with similar body conditions were selected and fed 1 of 6 diets: a basal diet with no supplement (control, CON), or a diet supplemented with 2.5 g/kg, 5.0 g/kg, 10.0 g/kg, 20.0 g/kg, or 40.0 g/kg IMO (IMO1, IMO2, IMO3, IMO4, or IMO5 group, respectively). Results showed that dietary treatments did not affect the reproductive performance and colostrum composition of sows (P > 0.05). However, compared to the CON, IMO reduced the diarrhea rate of suckling piglets (P < 0.05) and improved the concentrations of colostrum IgA, IgG, and IgM (P < 0.05). Moreover, IMO decreased the concentrations of serum D-lactate (D-LA) and lipopolysaccharides (LPS) at farrowing and day 18 of lactation (L18) (P < 0.05). High-throughput pyrosequencing of the 16S rRNA demonstrated that IMO shaped the composition of gut microbiota in different reproductive stages (day 107 of gestation, G107; day 10 of lactation, L10) (P < 0.05). At the genus level, the relative abundance of g_Parabacteroides and g_Slackia in G107 and g_Unclassified_Peptostreptococcaceae, g_Turicibacter, g_Sarcina, and g_Coprococcus in L10 was increased in IMO groups but the g_YRC22 in G107 was decreased in IMO groups relative to the CON group (P < 0.05). Furthermore, the serum D-LA and LPS were negatively correlated with the genus g_Akkermansia and g_Parabacteroides but positively correlated with the genus g_YRC22 and g_Unclassified_Peptostreptococcaceae. Additionally, the colostrum IgA, IgG, and IgM of sows were positively correlated with the genus g_Parabacteroides, g_Sarcina, and g_Coprococcus but negatively correlated with the genus g_YRC22. These findings indicated that IMO could promote the immune activation and had a significant influence in sows' gut microbiota during perinatal period, which may reduce the diarrhea rate of their offspring.

7.
Front Immunol ; 10: 2800, 2019.
Article de Anglais | MEDLINE | ID: mdl-31921106

RÉSUMÉ

Background: Accumulating data support the fact that the gut microbiota plays an important role in the progression of obesity and its related metabolic disease. Sex-related differences are an important consideration in the study of gut microbiota. Polyphenols can regulate gut microbiota, thereby improving obesity and its associated complications. There have been no studies conducted on the ability of honokiol (HON, an extract from Chinese herbal medicine) to regulate gut microbiota. The aim of this study was to examine whether HON supplementation would improve obesity by regulating the gut microbiota and its related metabolite levels, and whether there were sex-based differences in high-fat diet-induced obese mice. Methods: C57BL/6 mice (n = 120) were fed a normal chow diet (ND group), high-fat diet (HFD group), or HFD plus HON at 200, 400, and 800 mg/kg BW for 8 weeks. Body weight, adipose tissue weight, adipocyte diameter, insulin resistance, blood lipid and serum inflammatory cytokines, gut microbiota, and its metabolite were examined at the end of the experiment. Results: The HON supplementation reduced body weight, adipose tissue weight, adipocyte diameter, insulin resistance, blood lipid, and serum inflammatory cytokine levels in HFD-fed mice, and this effect was significant in the high-dose group. In addition, HON not only reversed gut disorders in HFD-fed mice, such as by enhanced the abundance of Akkermansia and short-chain fatty acids (SCFAs) producing Bacteroides and reduced Oscillospira, but also improved the SCFAs and endotoxin (LPS) levels, although there were sex-based differences. The correlation between several specific genera and obesity-related indexes was revealed through Spearman's correlation analysis. Moreover, HON may have dose-dependent effects on regulating gut microbiota to alleviate obesity. Conclusions: These findings suggest that HON can prevent diet-induced obesity and its associated diseases by regulating the gut microbiota and improving microbial metabolite levels. Moreover, our findings indicate that sex may be an important factor affecting HON activity.


Sujet(s)
Dérivés du biphényle/usage thérapeutique , Médicaments issus de plantes chinoises/usage thérapeutique , Microbiome gastro-intestinal/effets des médicaments et des substances chimiques , Lignanes/usage thérapeutique , Obésité/prévention et contrôle , Tissu adipeux/effets des médicaments et des substances chimiques , Animaux , Alimentation riche en graisse , Femelle , Inflammation/prévention et contrôle , Insulinorésistance , Lipides/sang , Mâle , Souris , Souris de lignée C57BL , Caractères sexuels
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE