Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 6 de 6
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Cell ; 187(18): 5081-5101.e19, 2024 Sep 05.
Article de Anglais | MEDLINE | ID: mdl-38996528

RÉSUMÉ

In developing brains, axons exhibit remarkable precision in selecting synaptic partners among many non-partner cells. Evolutionarily conserved teneurins are transmembrane proteins that instruct synaptic partner matching. However, how intracellular signaling pathways execute teneurins' functions is unclear. Here, we use in situ proximity labeling to obtain the intracellular interactome of a teneurin (Ten-m) in the Drosophila brain. Genetic interaction studies using quantitative partner matching assays in both olfactory receptor neurons (ORNs) and projection neurons (PNs) reveal a common pathway: Ten-m binds to and negatively regulates a RhoGAP, thus activating the Rac1 small GTPases to promote synaptic partner matching. Developmental analyses with single-axon resolution identify the cellular mechanism of synaptic partner matching: Ten-m signaling promotes local F-actin levels and stabilizes ORN axon branches that contact partner PN dendrites. Combining spatial proteomics and high-resolution phenotypic analyses, this study advanced our understanding of both cellular and molecular mechanisms of synaptic partner matching.


Sujet(s)
Axones , Protéines de Drosophila , Drosophila melanogaster , Protéines de tissu nerveux , Neurorécepteurs olfactifs , Transduction du signal , Synapses , Animaux , Protéines de Drosophila/métabolisme , Drosophila melanogaster/métabolisme , Protéines de tissu nerveux/métabolisme , Neurorécepteurs olfactifs/métabolisme , Axones/métabolisme , Synapses/métabolisme , Actines/métabolisme , Protéines d'activation de la GTPase/métabolisme , Encéphale/métabolisme , Dendrites/métabolisme , Protéine G rac1/métabolisme , Ténascine , Protéines G rac
2.
Cell ; 187(8): 1936-1954.e24, 2024 Apr 11.
Article de Anglais | MEDLINE | ID: mdl-38490196

RÉSUMÉ

Microglia are brain-resident macrophages that shape neural circuit development and are implicated in neurodevelopmental diseases. Multiple microglial transcriptional states have been defined, but their functional significance is unclear. Here, we identify a type I interferon (IFN-I)-responsive microglial state in the developing somatosensory cortex (postnatal day 5) that is actively engulfing whole neurons. This population expands during cortical remodeling induced by partial whisker deprivation. Global or microglial-specific loss of the IFN-I receptor resulted in microglia with phagolysosomal dysfunction and an accumulation of neurons with nuclear DNA damage. IFN-I gain of function increased neuronal engulfment by microglia in both mouse and zebrafish and restricted the accumulation of DNA-damaged neurons. Finally, IFN-I deficiency resulted in excess cortical excitatory neurons and tactile hypersensitivity. These data define a role for neuron-engulfing microglia during a critical window of brain development and reveal homeostatic functions of a canonical antiviral signaling pathway in the brain.


Sujet(s)
Encéphale , Interféron de type I , Microglie , Animaux , Souris , Interféron de type I/métabolisme , Microglie/métabolisme , Neurones/métabolisme , Danio zébré , Encéphale/cytologie , Encéphale/croissance et développement
3.
Neuron ; 110(14): 2299-2314.e8, 2022 07 20.
Article de Anglais | MEDLINE | ID: mdl-35613619

RÉSUMÉ

Transcription factors specify the fate and connectivity of developing neurons. We investigate how a lineage-specific transcription factor, Acj6, controls the precise dendrite targeting of Drosophila olfactory projection neurons (PNs) by regulating the expression of cell-surface proteins. Quantitative cell-surface proteomic profiling of wild-type and acj6 mutant PNs in intact developing brains, and a proteome-informed genetic screen identified PN surface proteins that execute Acj6-regulated wiring decisions. These include canonical cell adhesion molecules and proteins previously not associated with wiring, such as Piezo, whose mechanosensitive ion channel activity is dispensable for its function in PN dendrite targeting. Comprehensive genetic analyses revealed that Acj6 employs unique sets of cell-surface proteins in different PN types for dendrite targeting. Combined expression of Acj6 wiring executors rescued acj6 mutant phenotypes with higher efficacy and breadth than expression of individual executors. Thus, Acj6 controls wiring specificity of different neuron types by specifying distinct combinatorial expression of cell-surface executors.


Sujet(s)
Protéines de Drosophila , Neurorécepteurs olfactifs , Animaux , Dendrites/physiologie , Drosophila/métabolisme , Protéines de Drosophila/métabolisme , Canaux ioniques/métabolisme , Protéines membranaires/métabolisme , Protéines de tissu nerveux/métabolisme , Voies olfactives/physiologie , Neurorécepteurs olfactifs/métabolisme , Facteurs de transcription à domaine POU/métabolisme , Protéomique , Facteurs de transcription/génétique , Facteurs de transcription/métabolisme
4.
Cell ; 180(2): 373-386.e15, 2020 01 23.
Article de Anglais | MEDLINE | ID: mdl-31955847

RÉSUMÉ

Molecular interactions at the cellular interface mediate organized assembly of single cells into tissues and, thus, govern the development and physiology of multicellular organisms. Here, we developed a cell-type-specific, spatiotemporally resolved approach to profile cell-surface proteomes in intact tissues. Quantitative profiling of cell-surface proteomes of Drosophila olfactory projection neurons (PNs) in pupae and adults revealed global downregulation of wiring molecules and upregulation of synaptic molecules in the transition from developing to mature PNs. A proteome-instructed in vivo screen identified 20 cell-surface molecules regulating neural circuit assembly, many of which belong to evolutionarily conserved protein families not previously linked to neural development. Genetic analysis further revealed that the lipoprotein receptor LRP1 cell-autonomously controls PN dendrite targeting, contributing to the formation of a precise olfactory map. These findings highlight the power of temporally resolved in situ cell-surface proteomic profiling in discovering regulators of brain wiring.


Sujet(s)
Voies olfactives/métabolisme , Neurorécepteurs olfactifs/métabolisme , Protéomique/méthodes , Animaux , Axones/métabolisme , Encéphale/métabolisme , Dendrites/métabolisme , Protéines de Drosophila/métabolisme , Drosophila melanogaster/métabolisme , Analyse de profil d'expression de gènes/méthodes , Régulation de l'expression des gènes au cours du développement/génétique , Protéines membranaires/métabolisme , Neurogenèse/physiologie , Nerf olfactif/métabolisme , Voies olfactives/cytologie , Voies olfactives/physiologie , Récepteurs aux lipoprotéines/métabolisme , Odorat/physiologie
5.
Elife ; 82019 06 21.
Article de Anglais | MEDLINE | ID: mdl-31225795

RÉSUMÉ

Plexins exhibit multitudinous, evolutionarily conserved functions in neural development. How Plexins employ their diverse structural motifs in vivo to perform distinct roles is unclear. We previously reported that Plexin B (PlexB) controls multiple steps during the assembly of the Drosophila olfactory circuit (Li et al., 2018b). Here, we systematically mutagenized structural motifs of PlexB and examined the function of these variants in these multiple steps: axon fasciculation, trajectory choice, and synaptic partner selection. We found that the extracellular Sema domain is essential for all three steps, the catalytic site of the intracellular RapGAP is engaged in none, and the intracellular GTPase-binding motifs are essential for trajectory choice and synaptic partner selection, but are dispensable for fasciculation. Moreover, extracellular PlexB cleavage serves as a regulatory mechanism of PlexB signaling. Thus, the divergent roles of PlexB motifs in distinct steps of neural development contribute to its functional versatility in neural circuit assembly.


Sujet(s)
Protéines de Drosophila/génétique , Protéines de tissu nerveux/génétique , Neurogenèse/génétique , Récepteurs de surface cellulaire/génétique , Odorat/génétique , Animaux , Animal génétiquement modifié/génétique , Axones/métabolisme , Drosophila melanogaster/génétique , Drosophila melanogaster/croissance et développement , Bulbe olfactif/croissance et développement , Bulbe olfactif/métabolisme , Sémaphorines/génétique , Transduction du signal/génétique , Odorat/physiologie
6.
Elife ; 72018 08 23.
Article de Anglais | MEDLINE | ID: mdl-30136927

RÉSUMÉ

The precise assembly of a neural circuit involves many consecutive steps. The conflict between a limited number of wiring molecules and the complexity of the neural network impels each molecule to execute multiple functions at different steps. Here, we examined the cell-type specific distribution of endogenous levels of axon guidance receptor Plexin B (PlexB) in the developing antennal lobe, the first olfactory processing center in Drosophila. We found that different classes of olfactory receptor neurons (ORNs) express PlexB at different levels in two wiring steps - axonal trajectory choice and subsequent target selection. In line with its temporally distinct patterns, the proper levels of PlexB control both steps in succession. Genetic interactions further revealed that the effect of high-level PlexB is antagonized by its canonical partner Sema2b. Thus, PlexB plays a multifaceted role in instructing the assembly of the Drosophila olfactory circuit through temporally-regulated expression patterns and expression level-dependent effects.


Sujet(s)
Protéines de Drosophila/métabolisme , Drosophila melanogaster/physiologie , Protéines de tissu nerveux/métabolisme , Récepteurs de surface cellulaire/métabolisme , Odorat/physiologie , Animaux , Antennes des arthropodes/innervation , Antennes des arthropodes/physiologie , Axones/physiologie , Modèles biologiques , Neurorécepteurs olfactifs/physiologie
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE