Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 294
Filtrer
1.
Nature ; 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39261734

RÉSUMÉ

Human genetic studies of common variants have provided substantial insight into the biological mechanisms that govern ovarian ageing1. Here we report analyses of rare protein-coding variants in 106,973 women from the UK Biobank study, implicating genes with effects around five times larger than previously found for common variants (ETAA1, ZNF518A, PNPLA8, PALB2 and SAMHD1). The SAMHD1 association reinforces the link between ovarian ageing and cancer susceptibility1, with damaging germline variants being associated with extended reproductive lifespan and increased all-cause cancer risk in both men and women. Protein-truncating variants in ZNF518A are associated with shorter reproductive lifespan-that is, earlier age at menopause (by 5.61 years) and later age at menarche (by 0.56 years). Finally, using 8,089 sequenced trios from the 100,000 Genomes Project (100kGP), we observe that common genetic variants associated with earlier ovarian ageing associate with an increased rate of maternally derived de novo mutations. Although we were unable to replicate the finding in independent samples from the deCODE study, it is consistent with the expected role of DNA damage response genes in maintaining the genetic integrity of germ cells. This study provides evidence of genetic links between age of menopause and cancer risk.

2.
JAMA Cardiol ; 2024 Sep 04.
Article de Anglais | MEDLINE | ID: mdl-39230897

RÉSUMÉ

Importance: Understanding of the genetics of accessory atrioventricular pathways (APs) and affiliated arrhythmias is limited. Objective: To investigate the genetics of APs and affiliated arrhythmias. Design, Setting, and Participants: This was a genome-wide association study (GWAS) of APs, defined by International Classification of Diseases (ICD) codes and/or confirmed by electrophysiology (EP) study. Genome-wide significant AP variants were tested for association with AP-affiliated arrhythmias: paroxysmal supraventricular tachycardia (PSVT), atrial fibrillation (AF), ventricular tachycardia, and cardiac arrest. AP variants were also tested in data on other heart diseases and measures of cardiac physiology. Individuals with APs and control individuals from Iceland (deCODE Genetics), Denmark (Copenhagen Hospital Biobank, Danish Blood Donor Study, and SupraGen/the Danish General Suburban Population Study [GESUS]), the US (Intermountain Healthcare), and the United Kingdom (UK Biobank) were included. Time of phenotype data collection ranged from January 1983 to December 2022. Data were analyzed from August 2022 to January 2024. Exposures: Sequence variants. Main Outcomes and Measures: Genome-wide significant association of sequence variants with APs. Results: The GWAS included 2310 individuals with APs (median [IQR] age, 43 [28-57] years; 1252 [54.2%] male and 1058 [45.8%] female) and 1 206 977 control individuals (median [IQR] year of birth, 1955 [1945-1970]; 632 888 [52.4%] female and 574 089 [47.6%] male). Of the individuals with APs, 909 had been confirmed in EP study. Three common missense variants were associated with APs, in the genes CCDC141 (p.Arg935Trp: adjusted odds ratio [aOR], 1.37; 95% CI, 1.24-1.52, and p.Ala141Val: aOR, 1.55; 95% CI 1.34-1.80) and SCN10A (p.Ala1073Val: OR, 1.22; 95% CI, 1.15-1.30). The 3 variants associated with PSVT and the SCN10A variant associated with AF, supporting an effect on AP-affiliated arrhythmias. All 3 AP risk alleles were associated with higher heart rate and shorter PR interval, and have reported associations with chronotropic response. Conclusions and Relevance: Associations were found between sequence variants and APs that were also associated with risk of PSVT, and thus likely atrioventricular reentrant tachycardia, but had allele-specific associations with AF and conduction disorders. Genetic variation in the modulation of heart rate, chronotropic response, and atrial or atrioventricular node conduction velocity may play a role in the risk of AP-affiliated arrhythmias. Further research into CCDC141 could provide insights for antiarrhythmic therapeutic targeting in the presence of an AP.

4.
NPJ Parkinsons Dis ; 10(1): 140, 2024 Aug 15.
Article de Anglais | MEDLINE | ID: mdl-39147844

RÉSUMÉ

Parkinson's disease (PD) is a debilitating neurodegenerative disorder and its rising global incidence highlights the need for the identification of modifiable risk factors. In a gene-based burden test of rare variants (8647 PD cases and 777,693 controls) we discovered a novel association between loss-of-function variants in ITSN1 and PD. This association was further supported with burden data from the Neurodegenerative Disease Knowledge Portal and the Accelerating Medicines Partnership Parkinson's Disease Knowledge Platform. Our findings show that Rho GTPases and disruptions in synaptic vesicle transport may be involved in the pathogenesis of PD, pointing to the possibility of novel therapeutic approaches.

5.
Nat Genet ; 56(9): 1804-1810, 2024 Sep.
Article de Anglais | MEDLINE | ID: mdl-39192094

RÉSUMÉ

Age at menopause (AOM) has a substantial impact on fertility and disease risk. While many loci with variants that associate with AOM have been identified through genome-wide association studies (GWAS) under an additive model, other genetic models are rarely considered1. Here through GWAS meta-analysis under the recessive model of 174,329 postmenopausal women from Iceland, Denmark, the United Kingdom (UK; UK Biobank) and Norway, we study low-frequency variants with a large effect on AOM. We discovered that women homozygous for the stop-gain variant rs117316434 (A) in CCDC201 (p.(Arg162Ter), minor allele frequency ~1%) reached menopause 9 years earlier than other women (P = 1.3 × 10-15). The genotype is present in one in 10,000 northern European women and leads to primary ovarian insufficiency in close to half of them. Consequently, homozygotes have fewer children, and the age at last childbirth is 5 years earlier (P = 3.8 × 10-5). The CCDC201 gene was only found in humans in 2022 and is highly expressed in oocytes. Homozygosity for CCDC201 loss-of-function has a substantial impact on female reproductive health, and homozygotes would benefit from reproductive counseling and treatment for symptoms of early menopause.


Sujet(s)
Étude d'association pangénomique , Homozygote , Insuffisance ovarienne primitive , Humains , Femelle , Insuffisance ovarienne primitive/génétique , Polymorphisme de nucléotide simple , Adulte d'âge moyen , Ménopause/génétique , Royaume-Uni , Fréquence d'allèle , Islande , Danemark , Prédisposition génétique à une maladie
6.
Nat Commun ; 15(1): 5748, 2024 Jul 09.
Article de Anglais | MEDLINE | ID: mdl-38982041

RÉSUMÉ

Autoimmune thyroid disease (AITD) is a common autoimmune disease. In a GWAS meta-analysis of 110,945 cases and 1,084,290 controls, 290 sequence variants at 225 loci are associated with AITD. Of these variants, 115 are previously unreported. Multiomics analysis yields 235 candidate genes outside the MHC-region and the findings highlight the importance of genes involved in T-cell regulation. A rare 5'-UTR variant (rs781745126-T, MAF = 0.13% in Iceland) in LAG3 has the largest effect (OR = 3.42, P = 2.2 × 10-16) and generates a novel start codon for an open reading frame upstream of the canonical protein translation initiation site. rs781745126-T reduces mRNA and surface expression of the inhibitory immune checkpoint LAG-3 co-receptor on activated lymphocyte subsets and halves LAG-3 levels in plasma among heterozygotes. All three homozygous carriers of rs781745126-T have AITD, of whom one also has two other T-cell mediated diseases, that is vitiligo and type 1 diabetes. rs781745126-T associates nominally with vitiligo (OR = 5.1, P = 6.5 × 10-3) but not with type 1 diabetes. Thus, the effect of rs781745126-T is akin to drugs that inhibit LAG-3, which unleash immune responses and can have thyroid dysfunction and vitiligo as adverse events. This illustrates how a multiomics approach can reveal potential drug targets and safety concerns.


Sujet(s)
Antigènes CD , Codon d'initiation , Prédisposition génétique à une maladie , Protéine LAG-3 , Humains , Codon d'initiation/génétique , Antigènes CD/génétique , Antigènes CD/métabolisme , Diabète de type 1/génétique , Diabète de type 1/immunologie , Femelle , Polymorphisme de nucléotide simple , Vitiligo/génétique , Mâle , Étude d'association pangénomique , Thyroïdite auto-immune/génétique , Régions 5' non traduites/génétique , Études cas-témoins , Islande , Adulte
8.
Nat Genet ; 56(8): 1597-1603, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39039282

RÉSUMÉ

Bleeding in early pregnancy and postpartum hemorrhage (PPH) bear substantial risks, with the former closely associated with pregnancy loss and the latter being the foremost cause of maternal death, underscoring the severe impact on maternal-fetal health. We identified five genetic loci linked to PPH in a meta-analysis. Functional annotation analysis indicated candidate genes HAND2, TBX3 and RAP2C/FRMD7 at three loci and showed that at each locus, associated variants were located within binding sites for progesterone receptors. There were strong genetic correlations with birth weight, gestational duration and uterine fibroids. Bleeding in early pregnancy yielded no genome-wide association signals but showed strong genetic correlation with various human traits, suggesting a potentially complex, polygenic etiology. Our results suggest that PPH is related to progesterone signaling dysregulation, whereas early bleeding is a complex trait associated with underlying health and possibly socioeconomic status and may include genetic factors that have not yet been identified.


Sujet(s)
Étude d'association pangénomique , Polymorphisme de nucléotide simple , Hémorragie de la délivrance , Humains , Femelle , Hémorragie de la délivrance/génétique , Grossesse , Prédisposition génétique à une maladie , Locus génétiques , Récepteurs à la progestérone/génétique , Récepteurs à la progestérone/métabolisme
9.
Nat Genet ; 56(8): 1624-1631, 2024 Aug.
Article de Anglais | MEDLINE | ID: mdl-39048797

RÉSUMÉ

Gene promoter and enhancer sequences are bound by transcription factors and are depleted of methylated CpG sites (cytosines preceding guanines in DNA). The absence of methylated CpGs in these sequences typically correlates with increased gene expression, indicating a regulatory role for methylation. We used nanopore sequencing to determine haplotype-specific methylation rates of 15.3 million CpG units in 7,179 whole-blood genomes. We identified 189,178 methylation depleted sequences where three or more proximal CpGs were unmethylated on at least one haplotype. A total of 77,789 methylation depleted sequences (~41%) associated with 80,503 cis-acting sequence variants, which we termed allele-specific methylation quantitative trait loci (ASM-QTLs). RNA sequencing of 896 samples from the same blood draws used to perform nanopore sequencing showed that the ASM-QTL, that is, DNA sequence variability, drives most of the correlation found between gene expression and CpG methylation. ASM-QTLs were enriched 40.2-fold (95% confidence interval 32.2, 49.9) among sequence variants associating with hematological traits, demonstrating that ASM-QTLs are important functional units in the noncoding genome.


Sujet(s)
Ilots CpG , Méthylation de l'ADN , Locus de caractère quantitatif , Humains , Régions promotrices (génétique) , Haplotypes , Allèles , Régulation de l'expression des gènes , Variation génétique , Séquençage par nanopores/méthodes , Génome humain
10.
Nat Genet ; 56(7): 1397-1411, 2024 Jul.
Article de Anglais | MEDLINE | ID: mdl-38951643

RÉSUMÉ

Pubertal timing varies considerably and is associated with later health outcomes. We performed multi-ancestry genetic analyses on ~800,000 women, identifying 1,080 signals for age at menarche. Collectively, these explained 11% of trait variance in an independent sample. Women at the top and bottom 1% of polygenic risk exhibited ~11 and ~14-fold higher risks of delayed and precocious puberty, respectively. We identified several genes harboring rare loss-of-function variants in ~200,000 women, including variants in ZNF483, which abolished the impact of polygenic risk. Variant-to-gene mapping approaches and mouse gonadotropin-releasing hormone neuron RNA sequencing implicated 665 genes, including an uncharacterized G-protein-coupled receptor, GPR83, which amplified the signaling of MC3R, a key nutritional sensor. Shared signals with menopause timing at genes involved in DNA damage response suggest that the ovarian reserve might signal centrally to trigger puberty. We also highlight body size-dependent and independent mechanisms that potentially link reproductive timing to later life disease.


Sujet(s)
Fréquence d'allèle , Ménarche , Puberté , Humains , Femelle , Ménarche/génétique , Puberté/génétique , Animaux , Hérédité multifactorielle/génétique , Souris , Étude d'association pangénomique , Adolescent , Puberté précoce/génétique , Polymorphisme de nucléotide simple , Récepteurs couplés aux protéines G/génétique , Retard pubertaire/génétique , Enfant
11.
medRxiv ; 2024 Jul 05.
Article de Anglais | MEDLINE | ID: mdl-39006410

RÉSUMÉ

POPDC2 encodes for the Popeye domain-containing protein 2 which has an important role in cardiac pacemaking and conduction, due in part to its cAMP-dependent binding and regulation of TREK-1 potassium channels. Loss of Popdc2 in mice results in sinus pauses and bradycardia and morpholino knockdown of popdc2 in zebrafish results in atrioventricular (AV) block. We identified bi-allelic variants in POPDC2 in 4 families that presented with a phenotypic spectrum consisting of sinus node dysfunction, AV conduction defects and hypertrophic cardiomyopathy. Using homology modelling we show that the identified POPDC2 variants are predicted to diminish the ability of POPDC2 to bind cAMP. In in vitro electrophysiological studies we demonstrated that, while co-expression of wild-type POPDC2 with TREK-1 increased TREK-1 current density, POPDC2 variants found in the patients failed to increase TREK-1 current density. While patient muscle biopsy did not show clear myopathic disease, it showed significant reduction of the expression of both POPDC1 and POPDC2, suggesting that stability and/or membrane trafficking of the POPDC1-POPDC2 complex is impaired by pathogenic variants in any of the two proteins. Single-cell RNA sequencing from human hearts demonstrated that co-expression of POPDC1 and 2 was most prevalent in AV node, AV node pacemaker and AV bundle cells. Sinoatrial node cells expressed POPDC2 abundantly, but expression of POPDC1 was sparse. Together, these results concur with predisposition to AV node disease in humans with loss-of-function variants in POPDC1 and POPDC2 and presence of sinus node disease in POPDC2, but not in POPDC1 related disease in human. Using population-level genetic data of more than 1 million individuals we showed that none of the familial variants were associated with clinical outcomes in heterozygous state, suggesting that heterozygous family members are unlikely to develop clinical manifestations and therefore might not necessitate clinical follow-up. Our findings provide evidence for POPDC2 as the cause of a novel Mendelian autosomal recessive cardiac syndrome, consistent with previous work showing that mice and zebrafish deficient in functional POPDC2 display sinus and AV node dysfunction.

12.
N Engl J Med ; 390(23): 2217-2219, 2024 Jun 20.
Article de Anglais | MEDLINE | ID: mdl-38899702
14.
Nat Genet ; 56(5): 827-837, 2024 May.
Article de Anglais | MEDLINE | ID: mdl-38632349

RÉSUMÉ

We report a multi-ancestry genome-wide association study on liver cirrhosis and its associated endophenotypes, alanine aminotransferase (ALT) and γ-glutamyl transferase. Using data from 12 cohorts, including 18,265 cases with cirrhosis, 1,782,047 controls, up to 1 million individuals with liver function tests and a validation cohort of 21,689 cases and 617,729 controls, we identify and validate 14 risk associations for cirrhosis. Many variants are located near genes involved in hepatic lipid metabolism. One of these, PNPLA3 p.Ile148Met, interacts with alcohol intake, obesity and diabetes on the risk of cirrhosis and hepatocellular carcinoma (HCC). We develop a polygenic risk score that associates with the progression from cirrhosis to HCC. By focusing on prioritized genes from common variant analyses, we find that rare coding variants in GPAM associate with lower ALT, supporting GPAM as a potential target for therapeutic inhibition. In conclusion, this study provides insights into the genetic underpinnings of cirrhosis.


Sujet(s)
Prédisposition génétique à une maladie , Étude d'association pangénomique , Cirrhose du foie , Humains , Cirrhose du foie/génétique , Tumeurs du foie/génétique , Carcinome hépatocellulaire/génétique , Alanine transaminase/sang , Polymorphisme de nucléotide simple , Mâle , Triacylglycerol lipase/génétique , Femelle , gamma-Glutamyltransferase/génétique , Protéines membranaires/génétique , Études de cohortes , Études cas-témoins , Hérédité multifactorielle/génétique , Facteurs de risque , Variation génétique
15.
Commun Biol ; 7(1): 504, 2024 Apr 26.
Article de Anglais | MEDLINE | ID: mdl-38671141

RÉSUMÉ

Essential tremor (ET) is a prevalent neurological disorder with a largely unknown underlying biology. In this genome-wide association study meta-analysis, comprising 16,480 ET cases and 1,936,173 controls from seven datasets, we identify 12 sequence variants at 11 loci. Evaluating mRNA expression, splicing, plasma protein levels, and coding effects, we highlight seven putative causal genes at these loci, including CA3 and CPLX1. CA3 encodes Carbonic Anhydrase III and carbonic anhydrase inhibitors have been shown to decrease tremors. CPLX1, encoding Complexin-1, regulates neurotransmitter release. Through gene-set enrichment analysis, we identify a significant association with specific cell types, including dopaminergic and GABAergic neurons, as well as biological processes like Rho GTPase signaling. Genetic correlation analyses reveals a positive association between ET and Parkinson's disease, depression, and anxiety-related phenotypes. This research uncovers risk loci, enhancing our knowledge of the complex genetics of this common but poorly understood disorder, and highlights CA3 and CPLX1 as potential therapeutic targets.


Sujet(s)
Tremblement essentiel , Prédisposition génétique à une maladie , Étude d'association pangénomique , Tremblement essentiel/génétique , Humains , Polymorphisme de nucléotide simple , Locus génétiques
16.
Genome Med ; 16(1): 40, 2024 03 20.
Article de Anglais | MEDLINE | ID: mdl-38509622

RÉSUMÉ

BACKGROUND: The presence of coronary plaques with high-risk characteristics is strongly associated with adverse cardiac events beyond the identification of coronary stenosis. Testing by coronary computed tomography angiography (CCTA) enables the identification of high-risk plaques (HRP). Referral for CCTA is presently based on pre-test probability estimates including clinical risk factors (CRFs); however, proteomics and/or genetic information could potentially improve patient selection for CCTA and, hence, identification of HRP. We aimed to (1) identify proteomic and genetic features associated with HRP presence and (2) investigate the effect of combining CRFs, proteomics, and genetics to predict HRP presence. METHODS: Consecutive chest pain patients (n = 1462) undergoing CCTA to diagnose obstructive coronary artery disease (CAD) were included. Coronary plaques were assessed using a semi-automatic plaque analysis tool. Measurements of 368 circulating proteins were obtained with targeted Olink panels, and DNA genotyping was performed in all patients. Imputed genetic variants were used to compute a multi-trait multi-ancestry genome-wide polygenic score (GPSMult). HRP presence was defined as plaques with two or more high-risk characteristics (low attenuation, spotty calcification, positive remodeling, and napkin ring sign). Prediction of HRP presence was performed using the glmnet algorithm with repeated fivefold cross-validation, using CRFs, proteomics, and GPSMult as input features. RESULTS: HRPs were detected in 165 (11%) patients, and 15 input features were associated with HRP presence. Prediction of HRP presence based on CRFs yielded a mean area under the receiver operating curve (AUC) ± standard error of 73.2 ± 0.1, versus 69.0 ± 0.1 for proteomics and 60.1 ± 0.1 for GPSMult. Combining CRFs with GPSMult increased prediction accuracy (AUC 74.8 ± 0.1 (P = 0.004)), while the inclusion of proteomics provided no significant improvement to either the CRF (AUC 73.2 ± 0.1, P = 1.00) or the CRF + GPSMult (AUC 74.6 ± 0.1, P = 1.00) models, respectively. CONCLUSIONS: In patients with suspected CAD, incorporating genetic data with either clinical or proteomic data improves the prediction of high-risk plaque presence. TRIAL REGISTRATION: https://clinicaltrials.gov/ct2/show/NCT02264717 (September 2014).


Sujet(s)
Maladie des artères coronaires , Plaque d'athérosclérose , Humains , Maladie des artères coronaires/diagnostic , Maladie des artères coronaires/génétique , , Protéomique , Coronarographie/méthodes , Plaque d'athérosclérose/génétique , Plaque d'athérosclérose/complications , Facteurs de risque
17.
Genome Biol ; 25(1): 69, 2024 03 11.
Article de Anglais | MEDLINE | ID: mdl-38468278

RÉSUMÉ

BACKGROUND: Long-read sequencing can enable the detection of base modifications, such as CpG methylation, in single molecules of DNA. The most commonly used methods for long-read sequencing are nanopore developed by Oxford Nanopore Technologies (ONT) and single molecule real-time (SMRT) sequencing developed by Pacific Bioscience (PacBio). In this study, we systematically compare the performance of CpG methylation detection from long-read sequencing. RESULTS: We demonstrate that CpG methylation detection from 7179 nanopore-sequenced DNA samples is highly accurate and consistent with 132 oxidative bisulfite-sequenced (oxBS) samples, isolated from the same blood draws. We introduce quality filters for CpGs that further enhance the accuracy of CpG methylation detection from nanopore-sequenced DNA, while removing at most 30% of CpGs. We evaluate the per-site performance of CpG methylation detection across different genomic features and CpG methylation rates and demonstrate how the latest R10.4 flowcell chemistry and base-calling algorithms improve methylation detection from nanopore sequencing. Additionally, we show how the methylation detection of 50 SMRT-sequenced genomes compares to nanopore sequencing and oxBS. CONCLUSIONS: This study provides the first systematic comparison of CpG methylation detection tools for long-read sequencing methods. We compare two commonly used computational methods for the detection of CpG methylation in a large number of nanopore genomes, including samples sequenced using the latest R10.4 nanopore flowcell chemistry and 50 SMRT sequenced samples. We provide insights into the strengths and limitations of each sequencing method as well as recommendations for standardization and evaluation of tools designed for genome-scale modified base detection using long-read sequencing.


Sujet(s)
Méthylation de l'ADN , Génome humain , Humains , Analyse de séquence d'ADN/méthodes , Séquençage nucléotidique à haut débit/méthodes , ADN
18.
Nat Commun ; 15(1): 586, 2024 Jan 18.
Article de Anglais | MEDLINE | ID: mdl-38233393

RÉSUMÉ

X-chromosomal genetic variants are understudied but can yield valuable insights into sexually dimorphic human traits and diseases. We performed a sex-stratified cross-ancestry X-chromosome-wide association meta-analysis of seven kidney-related traits (n = 908,697), identifying 23 loci genome-wide significantly associated with two of the traits: 7 for uric acid and 16 for estimated glomerular filtration rate (eGFR), including four novel eGFR loci containing the functionally plausible prioritized genes ACSL4, CLDN2, TSPAN6 and the female-specific DRP2. Further, we identified five novel sex-interactions, comprising male-specific effects at FAM9B and AR/EDA2R, and three sex-differential findings with larger genetic effect sizes in males at DCAF12L1 and MST4 and larger effect sizes in females at HPRT1. All prioritized genes in loci showing significant sex-interactions were located next to androgen response elements (ARE). Five ARE genes showed sex-differential expressions. This study contributes new insights into sex-dimorphisms of kidney traits along with new prioritized gene targets for further molecular research.


Sujet(s)
Androgènes , Étude d'association pangénomique , Humains , Mâle , Femelle , Androgènes/génétique , Rein , Chromosomes X humains/génétique , Éléments de réponse , Polymorphisme de nucléotide simple , Prédisposition génétique à une maladie , Tétraspanines/génétique
19.
Nat Struct Mol Biol ; 31(4): 710-716, 2024 Apr.
Article de Anglais | MEDLINE | ID: mdl-38287193

RÉSUMÉ

Two-thirds of all human conceptions are lost, in most cases before clinical detection. The lack of detailed understanding of the causes of pregnancy losses constrains focused counseling for future pregnancies. We have previously shown that a missense variant in synaptonemal complex central element protein 2 (SYCE2), in a key residue for the assembly of the synaptonemal complex backbone, associates with recombination traits. Here we show that it also increases risk of pregnancy loss in a genome-wide association analysis on 114,761 women with reported pregnancy loss. We further show that the variant associates with more random placement of crossovers and lower recombination rate in longer chromosomes but higher in the shorter ones. These results support the hypothesis that some pregnancy losses are due to failures in recombination. They further demonstrate that variants with a substantial effect on the quality of recombination can be maintained in the population.


Sujet(s)
Protéines nucléaires , Complexe synaptonémal , Humains , Femelle , Grossesse , Complexe synaptonémal/métabolisme , Protéines nucléaires/métabolisme , Étude d'association pangénomique , Protéines chromosomiques nonhistones/métabolisme , Recombinaison génétique , Méiose
20.
Eur J Prev Cardiol ; 31(6): 644-654, 2024 Apr 18.
Article de Anglais | MEDLINE | ID: mdl-38007706

RÉSUMÉ

AIMS: Hypertension is a major modifiable cause of morbidity and mortality that affects over 1 billion people worldwide. Blood pressure (BP) traits have a strong genetic component that can be quantified with polygenic risk scores (PRSs). To date, the performance of BP PRSs has mainly been assessed in adults, and less is known about polygenic hypertension risk in childhood. METHODS AND RESULTS: Multiple PRSs for systolic BP (SBP), diastolic BP (DBP), and pulse pressure were developed using either genome-wide significant weights, pruning and thresholding, or Bayesian regression. Among 87 total PRSs, the top performer for each trait was applied in independent cohorts of children and adult to assess genotype-phenotype associations and disease risk across the lifespan. Differences between those with low (1st decile), average (2nd-9th decile), and high (10th decile) PRS emerge in the first years of life and are maintained throughout adulthood. These diverging BP trajectories also seem to affect cardiovascular and renal disease risk, with increased risk observed among those in the top decile and reduced risk among those in the bottom decile of the polygenic risk distribution compared with the rest of the population. CONCLUSION: Genetic risk factors are associated with BP traits across the lifespan, beginning in the first years of life. Given the importance of exposure time in disease pathogenesis and the early rise in BP levels among those genetically susceptible, PRSs may help identify high-risk individuals prior to hypertension onset, facilitate primordial prevention, and reduce the burden of this public health challenge.


A high genetic risk of elevated blood pressure (BP) is associated with increased BP from early childhood and throughout the lifespan. Inherited predispositions also affect the risk of cardiovascular morbidity and mortality, yet this appears to be modified by the absence or presence of hypertension, indicating that genetic hypertension risk is not deterministic, and that controlling BP can and should be done across the polygenic risk distribution. Given that differences in BP emerge early in life as a function of genetic risk, polygenic risk scores have the potential to reduce the duration of exposure to high BP by identifying high-risk individuals from birth, and thereby attenuate lifelong disease risk.


Sujet(s)
, Hypertension artérielle , Adulte , Enfant , Humains , Pression sanguine , Longévité , Théorème de Bayes , Hypertension artérielle/épidémiologie , Prédisposition génétique à une maladie , Facteurs de risque
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE