Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Polymers (Basel) ; 15(2)2023 Jan 04.
Article de Anglais | MEDLINE | ID: mdl-36679131

RÉSUMÉ

Conductive hydrogels with high electrical conductivity, ductility, and anti-dryness have promising applications in flexible wearable electronics. However, its potential applications in such a developing field are severely hampered by its extremely poor adaptability to cold or hot environmental conditions. In this research, an "organic solvent/water" composite conductive hydrogel is developed by introducing a binary organic solvent of EG/H2O into the system using a simple one-pot free radical polymerization method to create Ti3C2TX MXene nanosheet-reinforced polyvinyl alcohol/polyacrylamide covalently networked nanocomposite hydrogels (PAEM) with excellent flexibility and mechanical properties. The optimized PAEM contains 0.3 wt% MXene has excellent mechanical performance (tensile elongation of ~1033%) and an improved modulus of elasticity (0.14 MPa), a stable temperature tolerance from -50 to 40 °C, and a high gauge factor of 10.95 with a long storage period and response time of 110 ms. Additionally, it is worth noting that the elongation at break at -40 °C was maintained at around 50% of room temperature. This research will contribute to the development of flexible sensors for human-computer interaction, electronic skin, and human health monitoring.

2.
Materials (Basel) ; 14(24)2021 Dec 14.
Article de Anglais | MEDLINE | ID: mdl-34947307

RÉSUMÉ

The fabrication of deep microgrooves has become an issue that needs to be addressed with the introduction of difficult-to-cut materials and ever-increasing stringent quality requirements. However, both laser machining and electrochemical machining could not fulfill the requirements of high machining efficiency and precision with good surface quality. In this paper, laser and shaped tube electrochemical milling (Laser-STEM) were initially employed to fabricate microgrooves. The mechanisms of the Laser-STEM process were studied theoretically and experimentally. With the developed experimental setup, the influences of laser power and voltage on the width, depth and bottom surface roughness of the fabricated microgrooves were studied. Results have shown a laser power of less than 6 W could enhance the electrochemical machining rate without forming a deep kerf at the bottom during Laser-STEM. The machining accuracy or localization of electrochemicals could be improved with laser assistance, whilst the laser with a high-power density would deteriorate the surface roughness of the bottom machining area. Experimental results have proved that both the machining efficiency and the machining precision can be enhanced by synchronous laser-assisted STEM, compared with that of pure electrochemical milling. The machining side gap was decreased by 62.5% while using a laser power of 6 W in Laser-STEM. The laser-assistance effects were beneficial to reduce the surface roughness of the microgrooves machined by Laser-STEM, with the proper voltage. A laser power of 3 W was preferred to obtain the smallest surface roughness value. Additionally, the machining efficiency of layer-by-layer Laser-STEM can be improved utilizing a constant layer thickness (CLT) mode, while fabricating microgrooves with a high aspect ratio. Finally, microgrooves with a width of 1.79 mm, a depth of 6.49 mm and a surface roughness of 2.5 µm were successfully fabricated.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE