Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 20 de 154
Filtrer
1.
Brain Commun ; 6(5): fcae300, 2024.
Article de Anglais | MEDLINE | ID: mdl-39291164

RÉSUMÉ

There is increasing interest in Alzheimer's disease related plasma biomarkers due to their accessibility and scalability. We hypothesized that integrating plasma biomarkers with other commonly used and available participant data (MRI, cardiovascular factors, lifestyle, genetics) using machine learning (ML) models can improve individual prediction of cognitive outcomes. Further, our goal was to evaluate the heterogeneity of these predictors across different age strata. This longitudinal study included 1185 participants from the Mayo Clinic Study of Aging who had complete plasma analyte work-up at baseline. We used the Quanterix Simoa immunoassay to measure neurofilament light, Aß1-42 and Aß1-40 (used as Aß42/Aß40 ratio), glial fibrillary acidic protein, and phosphorylated tau 181 (p-tau181). Participants' brain health was evaluated through gray and white matter structural MRIs. The study also considered cardiovascular factors (hyperlipidemia, hypertension, stroke, diabetes, chronic kidney disease), lifestyle factors (area deprivation index, body mass index, cognitive and physical activities), and genetic factors (APOE, single nucleotide polymorphisms, and polygenic risk scores). An ML model was developed to predict cognitive outcomes at baseline and decline (slope). Three models were created: a base model with groups of risk factors as predictors, an enhanced model included socio-demographics, and a final enhanced model by incorporating plasma and socio-demographics into the base models. Models were explained for three age strata: younger than 65 years, 65-80 years, and older than 80 years, and further divided based on amyloid positivity status. Regardless of amyloid status the plasma biomarkers showed comparable performance (R² = 0.15) to MRI (R² = 0.18) and cardiovascular measures (R² = 0.10) when predicting cognitive decline. Inclusion of cardiovascular or MRI measures with plasma in the presence of socio-demographic improved cognitive decline prediction (R² = 0.26 and 0.27). For amyloid positive individuals Aß42/Aß40, glial fibrillary acidic protein and p-tau181 were the top predictors of cognitive decline while Aß42/Aß40 was prominent for amyloid negative participants across all age groups. Socio-demographics explained a large portion of the variance in the amyloid negative individuals while the plasma biomarkers predominantly explained the variance in amyloid positive individuals (21% to 37% from the younger to the older age group). Plasma biomarkers performed similarly to MRI and cardiovascular measures when predicting cognitive outcomes and combining them with either measure resulted in better performance. Top predictors were heterogeneous between cross-sectional and longitudinal cognition models, across age groups, and amyloid status. Multimodal approaches will enhance the usefulness of plasma biomarkers through careful considerations of a study population's socio-demographics, brain and cardiovascular health.

2.
Alzheimers Dement ; 2024 Sep 11.
Article de Anglais | MEDLINE | ID: mdl-39258539

RÉSUMÉ

The magnetic resonance imaging (MRI) Core has been operating since Alzheimer's Disease Neuroimaging Initiative's (ADNI) inception, providing 20 years of data including reliable, multi-platform standardized protocols, carefully curated image data, and quantitative measures provided by expert investigators. The overarching purposes of the MRI Core include: (1) optimizing and standardizing MRI acquisition methods, which have been adopted by many multicenter studies and trials worldwide and (2) providing curated images and numeric summary values from relevant MRI sequences/contrasts to the scientific community. Over time, ADNI MRI has become increasingly complex. To remain technically current, the ADNI MRI protocol has changed substantially over the past two decades. The ADNI 4 protocol contains nine different imaging types (e.g., three dimensional [3D] T1-weighted and fluid-attenuated inversion recovery [FLAIR]). Our view is that the ADNI MRI data are a greatly underutilized resource. The purpose of this paper is to educate the scientific community on ADNI MRI methods and content to promote greater awareness, accessibility, and use. HIGHLIGHTS: The MRI Core provides multi-platform standardized protocols, carefully curated image data, and quantitative analysis by expert groups. The ADNI MRI protocol has undergone major changes over the past two decades to remain technically current. As of April 25, 2024, the following numbers of image series are available: 17,141 3D T1w; 6877 FLAIR; 3140 T2/PD; 6623 GRE; 3237 dMRI; 2846 ASL; 2968 TF-fMRI; and 2861 HighResHippo (see Table 1 for abbreviations). As of April 25, 2024, the following numbers of quantitative analyses are available: FreeSurfer 10,997; BSI 6120; tensor based morphometry (TBM) and TBM-SYN 12,019; WMH 9944; dMRI 1913; ASL 925; TF-fMRI NFQ 2992; and medial temporal subregion volumes 2726 (see Table 4 for abbreviations). ADNI MRI is an underutilized resource that could be more useful to the research community.

3.
Alzheimers Dement ; 2024 Aug 08.
Article de Anglais | MEDLINE | ID: mdl-39115941

RÉSUMÉ

Phase four of the Alzheimer's Disease Neuroimaging Initiative (ADNI4) magnetic resonance imaging (MRI) protocols aim to maintain longitudinal consistency across two decades of data acquisition, while adopting new technologies. Here we describe and justify the study's design and targeted biomarkers. The ADNI4 MRI protocol includes nine MRI sequences. Some sequences require the latest hardware and software system upgrades and are continuously rolled out as they become available at each site. The main sequence additions/changes in ADNI4 are: (1) compressed sensing (CS) T1-weighting, (2) pseudo-continuous arterial spin labeling (ASL) on all three vendors (GE, Siemens, Philips), (3) multiple-post-labeling-delay ASL, (4) 1 mm3 isotropic 3D fluid-attenuated inversion recovery, and (5) CS 3D T2-weighted. ADNI4 aims to help the neuroimaging community extract valuable imaging biomarkers and provide a database to test the impact of advanced imaging strategies on diagnostic accuracy and disease sensitivity among individuals lying on the cognitively normal to impaired spectrum. HIGHLIGHTS: A summary of MRI protocols for phase four of the Alzheimer's Disease Neuroimaging Initiative (ADNI 4). The design and justification for the ADNI 4 MRI protocols. Compressed sensing and multi-band advances have been applied to improve scan time. ADNI4 protocols aim to streamline safety screening and therapy monitoring. The ADNI4 database will be a valuable test bed for academic research.

4.
Brain Commun ; 6(2): fcae005, 2024.
Article de Anglais | MEDLINE | ID: mdl-38444909

RÉSUMÉ

Disruption of the default mode network is a hallmark of Alzheimer's disease, which has not been extensively examined in atypical phenotypes. We investigated cross-sectional and 1-year longitudinal changes in default mode network sub-systems in the visual and language variants of Alzheimer's disease, in relation to age and tau. Sixty-one amyloid-positive Alzheimer's disease participants diagnosed with posterior cortical atrophy (n = 33) or logopenic progressive aphasia (n = 28) underwent structural MRI, resting-state functional MRI and [18F]flortaucipir PET. One-hundred and twenty-two amyloid-negative cognitively unimpaired individuals and 60 amyloid-positive individuals diagnosed with amnestic Alzheimer's disease were included as controls and as a comparison group, respectively, and had structural and resting-state functional MRI. Forty-one atypical Alzheimer's disease participants, 26 amnestic Alzheimer's disease participants and 40 cognitively unimpaired individuals had one follow-up functional MRI ∼1-2 years after the baseline scan. Default mode network connectivity was calculated using the dual regression method for posterior, ventral, anterior ventral and anterior dorsal sub-systems derived from independent component analysis. A global measure of default mode network connectivity, the network failure quotient, was also calculated. Linear mixed-effects models and voxel-based analyses were computed for each connectivity measure. Both atypical and amnestic Alzheimer's disease participants had lower cross-sectional posterior and ventral and higher anterior dorsal connectivity and network failure quotient relative to cognitively unimpaired individuals. Age had opposite effects on connectivity in Alzheimer's disease participants and cognitively unimpaired individuals. While connectivity declined with age in cognitively unimpaired individuals, younger Alzheimer's disease participants had lower connectivity than the older ones, particularly in the ventral default mode network. Greater baseline tau-PET uptake was associated with lower ventral and anterior ventral default mode network connectivity in atypical Alzheimer's disease. Connectivity in the ventral default mode network declined over time in atypical Alzheimer's disease, particularly in older participants, with lower tau burden. Voxel-based analyses validated the findings of higher anterior dorsal default mode network connectivity, lower posterior and ventral default mode network connectivity and decline in ventral default mode network connectivity over time in atypical Alzheimer's disease. Visuospatial symptoms were associated with default mode network connectivity disruption. In summary, default mode connectivity disruption was similar between atypical and amnestic Alzheimer's disease variants, and discriminated Alzheimer's disease from cognitively unimpaired individuals, with decreased posterior and increased anterior connectivity and with disruption more pronounced in younger participants. The ventral default mode network declined over time in atypical Alzheimer's disease, suggesting a shift in default mode network connectivity likely related to tau pathology.

5.
Alzheimers Dement ; 20(4): 2485-2496, 2024 04.
Article de Anglais | MEDLINE | ID: mdl-38329197

RÉSUMÉ

INTRODUCTION: Patients with dementia with Lewy bodies (DLB) may have Alzheimers disease (AD) pathology that can be detected by plasma biomarkers. Our objective was to evaluate plasma biomarkers of AD and their association with positron emission tomography (PET) biomarkers of amyloid and tau deposition in the continuum of DLB, starting from prodromal stages of the disease. METHODS: The cohort included patients with isolated rapid eye movement (REM) sleep behavior disorder (iRBD), mild cognitive impairment with Lewy bodies (MCI-LB), or DLB, with a concurrent blood draw and PET scans. RESULTS: Abnormal levels of plasma glial fibrillary acidic protein (GFAP) were found at the prodromal stage of MCI-LB in association with increased amyloid PET. Abnormal levels of plasma phosphorylated tau (p-tau)-181 and neurofilament light (NfL) were found at the DLB stage. Plasma p-tau-181 showed the highest accuracy in detecting abnormal amyloid and tau PET in patients with DLB. DISCUSSION: The range of AD co-pathology can be detected with plasma biomarkers in the DLB continuum, particularly with plasma p-tau-181 and GFAP.


Sujet(s)
Maladie d'Alzheimer , Dysfonctionnement cognitif , Maladie à corps de Lewy , Trouble du comportement en sommeil paradoxal , Humains , Maladie d'Alzheimer/diagnostic , Maladie à corps de Lewy/diagnostic , Peptides bêta-amyloïdes , Protéines tau , Marqueurs biologiques/métabolisme , Dysfonctionnement cognitif/diagnostic
6.
Alzheimers Dement ; 20(2): 1225-1238, 2024 Feb.
Article de Anglais | MEDLINE | ID: mdl-37963289

RÉSUMÉ

INTRODUCTION: The timing of plasma biomarker changes is not well understood. The goal of this study was to evaluate the temporal co-evolution of plasma and positron emission tomography (PET) Alzheimer's disease (AD) biomarkers. METHODS: We included 1408 Mayo Clinic Study of Aging and Alzheimer's Disease Research Center participants. An accelerated failure time (AFT) model was fit with amyloid beta (Aß) PET, tau PET, plasma p-tau217, p-tau181, and glial fibrillary acidic protein (GFAP) as endpoints. RESULTS: Individual timing of plasma p-tau progression was strongly associated with Aß PET and GFAP progression. In the population, GFAP became abnormal first, then Aß PET, plasma p-tau, and tau PET temporal meta-regions of interest when applying cut points based on young, cognitively unimpaired participants. DISCUSSION: Plasma p-tau is a stronger indicator of a temporally linked response to elevated brain Aß than of tau pathology. While Aß deposition and a rise in GFAP are upstream events associated with tau phosphorylation, the temporal link between p-tau and Aß PET was the strongest. HIGHLIGHTS: Plasma p-tau progression was more strongly associated with Aß than tau PET. Progression on plasma p-tau was associated with Aß PET and GFAP progression. P-tau181 and p-tau217 become abnormal after Aß PET and before tau PET. GFAP became abnormal first, before plasma p-tau and Aß PET.


Sujet(s)
Maladie d'Alzheimer , Dysfonctionnement cognitif , Humains , Peptides bêta-amyloïdes , Maladie d'Alzheimer/imagerie diagnostique , Tomographie par émission de positons , Vieillissement , Encéphale/imagerie diagnostique , Protéines tau , Marqueurs biologiques
7.
Brain ; 147(3): 980-995, 2024 03 01.
Article de Anglais | MEDLINE | ID: mdl-37804318

RÉSUMÉ

Given the prevalence of dementia and the development of pathology-specific disease-modifying therapies, high-value biomarker strategies to inform medical decision-making are critical. In vivo tau-PET is an ideal target as a biomarker for Alzheimer's disease diagnosis and treatment outcome measure. However, tau-PET is not currently widely accessible to patients compared to other neuroimaging methods. In this study, we present a convolutional neural network (CNN) model that imputes tau-PET images from more widely available cross-modality imaging inputs. Participants (n = 1192) with brain T1-weighted MRI (T1w), fluorodeoxyglucose (FDG)-PET, amyloid-PET and tau-PET were included. We found that a CNN model can impute tau-PET images with high accuracy, the highest being for the FDG-based model followed by amyloid-PET and T1w. In testing implications of artificial intelligence-imputed tau-PET, only the FDG-based model showed a significant improvement of performance in classifying tau positivity and diagnostic groups compared to the original input data, suggesting that application of the model could enhance the utility of the metabolic images. The interpretability experiment revealed that the FDG- and T1w-based models utilized the non-local input from physically remote regions of interest to estimate the tau-PET, but this was not the case for the Pittsburgh compound B-based model. This implies that the model can learn the distinct biological relationship between FDG-PET, T1w and tau-PET from the relationship between amyloid-PET and tau-PET. Our study suggests that extending neuroimaging's use with artificial intelligence to predict protein specific pathologies has great potential to inform emerging care models.


Sujet(s)
Intelligence artificielle , Apprentissage profond , Neuroimagerie , Tauopathies , Humains , Protéines amyloïdogènes , Marqueurs biologiques , Fluorodésoxyglucose F18 , Neuroimagerie/méthodes , Tauopathies/imagerie diagnostique
8.
Neuroimage Clin ; 40: 103507, 2023.
Article de Anglais | MEDLINE | ID: mdl-37703605

RÉSUMÉ

Brain imaging research studies increasingly use "de-facing" software to remove or replace facial imagery before public data sharing. Several works have studied the effects of de-facing software on brain imaging biomarkers by directly comparing automated measurements from unmodified vs de-faced images, but most research brain images are used in analyses of correlations with cognitive measurements or clinical statuses, and the effects of de-facing on these types of imaging-to-cognition correlations has not been measured. In this work, we focused on brain imaging measures of amyloid (A), tau (T), neurodegeneration (N), and vascular (V) measures used in Alzheimer's Disease (AD) research. We created a retrospective sample of participants from three age- and sex-matched clinical groups (cognitively unimpaired, mild cognitive impairment, and AD dementia, and we performed region- and voxel-wise analyses of: hippocampal volume (N), white matter hyperintensity volume (V), amyloid PET (A), and tau PET (T) measures, each from multiple software pipelines, on their ability to separate cognitively defined groups and their degrees of correlation with age and Clinical Dementia Rating (CDR)-Sum of Boxes (CDR-SB). We performed each of these analyses twice: once with unmodified images and once with images de-faced with leading de-facing software mri_reface, and we directly compared the findings and their statistical strengths between the original vs. the de-faced images. Analyses with original and with de-faced images had very high agreement. There were no significant differences between any voxel-wise comparisons. Among region-wise comparisons, only three out of 55 correlations were significantly different between original and de-faced images, and these were not significant after correction for multiple comparisons. Overall, the statistical power of the imaging data for AD biomarkers was almost identical between unmodified and de-faced images, and their analyses results were extremely consistent.


Sujet(s)
Maladie d'Alzheimer , Dysfonctionnement cognitif , Humains , Maladie d'Alzheimer/imagerie diagnostique , Études rétrospectives , Encéphale/imagerie diagnostique , Encéphale/métabolisme , Dysfonctionnement cognitif/imagerie diagnostique , Tomographie par émission de positons/méthodes , Marqueurs biologiques , Peptides bêta-amyloïdes/métabolisme , Imagerie par résonance magnétique , Protéines tau
9.
Brain Commun ; 5(4): fcad184, 2023.
Article de Anglais | MEDLINE | ID: mdl-37434879

RÉSUMÉ

Posterior cortical atrophy and logopenic progressive aphasia are atypical clinical presentations of Alzheimer's disease. Resting-state functional connectivity studies have shown functional network disruptions in both phenotypes, particularly involving the language network in logopenic progressive aphasia and the visual network in posterior cortical atrophy. However, little is known about how connectivity differs both within and between brain networks in these atypical Alzheimer's disease phenotypes. A cohort of 144 patients was recruited by the Neurodegenerative Research Group at Mayo Clinic, Rochester, MN, USA, and underwent structural and resting-state functional MRI. Spatially preprocessed data were analysed to explore the default mode network and the salience, sensorimotor, language, visual and memory networks. The data were analysed at the voxel and network levels. Bayesian hierarchical linear models adjusted for age and sex were used to analyse within- and between-network connectivity. Reduced within-network connectivity was observed in the language network in both phenotypes, with stronger evidence of reductions in logopenic progressive aphasia compared to controls. Only posterior cortical atrophy showed reduced within-network connectivity in the visual network compared to controls. Both phenotypes showed reduced within-network connectivity in the default mode and sensorimotor networks. No significant change was noted in the memory network, but a slight increase in the salience within-network connectivity was seen in both phenotypes compared to controls. Between-network analysis in posterior cortical atrophy showed evidence of reduced visual-to-language network connectivity, with reduced visual-to-salience network connectivity, compared to controls. An increase in visual-to-default mode network connectivity was noted in posterior cortical atrophy compared to controls. Between-network analysis in logopenic progressive aphasia showed evidence of reduced language-to-visual network connectivity and an increase in language-to-salience network connectivity compared to controls. Findings from the voxel-level and network-level analysis were in line with the Bayesian hierarchical linear model analysis, showing reduced connectivity in the dominant network based on diagnosis and more crosstalk between networks in general compared to controls. The atypical Alzheimer's disease phenotypes were associated with disruptions in connectivity, both within and between brain networks. Phenotype-specific differences in connectivity patterns were noted in the visual network for posterior cortical atrophy and the language network for logopenic progressive aphasia.

10.
Neuroimage ; 276: 120199, 2023 08 01.
Article de Anglais | MEDLINE | ID: mdl-37269958

RÉSUMÉ

It is now widely known that research brain MRI, CT, and PET images may potentially be re-identified using face recognition, and this potential can be reduced by applying face-deidentification ("de-facing") software. However, for research MRI sequences beyond T1-weighted (T1-w) and T2-FLAIR structural images, the potential for re-identification and quantitative effects of de-facing are both unknown, and the effects of de-facing T2-FLAIR are also unknown. In this work we examine these questions (where applicable) for T1-w, T2-w, T2*-w, T2-FLAIR, diffusion MRI (dMRI), functional MRI (fMRI), and arterial spin labelling (ASL) sequences. Among current-generation, vendor-product research-grade sequences, we found that 3D T1-w, T2-w, and T2-FLAIR were highly re-identifiable (96-98%). 2D T2-FLAIR and 3D multi-echo GRE (ME-GRE) were also moderately re-identifiable (44-45%), and our derived T2* from ME-GRE (comparable to a typical 2D T2*) matched at only 10%. Finally, diffusion, functional and ASL images were each minimally re-identifiable (0-8%). Applying de-facing with mri_reface version 0.3 reduced successful re-identification to ≤8%, while differential effects on popular quantitative pipelines for cortical volumes and thickness, white matter hyperintensities (WMH), and quantitative susceptibility mapping (QSM) measurements were all either comparable with or smaller than scan-rescan estimates. Consequently, high-quality de-facing software can greatly reduce the risk of re-identification for identifiable MRI sequences with only negligible effects on automated intracranial measurements. The current-generation echo-planar and spiral sequences (dMRI, fMRI, and ASL) each had minimal match rates, suggesting that they have a low risk of re-identification and can be shared without de-facing, but this conclusion should be re-evaluated if they are acquired without fat suppression, with a full-face scan coverage, or if newer developments reduce the current levels of artifacts and distortion around the face.


Sujet(s)
Imagerie par résonance magnétique de diffusion , Imagerie par résonance magnétique , Humains , Imagerie par résonance magnétique/méthodes , Imagerie par résonance magnétique de diffusion/méthodes , Neuroimagerie , Artéfacts , Marqueurs de spin
11.
Nat Commun ; 14(1): 3097, 2023 05 29.
Article de Anglais | MEDLINE | ID: mdl-37248223

RÉSUMÉ

Whether a relationship exists between cerebrovascular disease and Alzheimer's disease has been a source of controversy. Evaluation of the temporal progression of imaging biomarkers of these disease processes may inform mechanistic associations. We investigate the relationship of disease trajectories of cerebrovascular disease (white matter hyperintensity, WMH, and fractional anisotropy, FA) and Alzheimer's disease (amyloid and tau PET) biomarkers in 2406 Mayo Clinic Study of Aging and Mayo Alzheimer's Disease Research Center participants using accelerated failure time models. The model assumes a common pattern of progression for each biomarker that is shifted earlier or later in time for each individual and represented by a per participant age adjustment. An individual's amyloid and tau PET adjustments show very weak temporal association with WMH and FA adjustments (R = -0.07 to 0.07); early/late amyloid or tau timing explains <1% of the variation in WMH and FA adjustment. Earlier onset of amyloid is associated with earlier onset of tau (R = 0.57, R2 = 32%). These findings support a strong mechanistic relationship between amyloid and tau aggregation, but not between WMH or FA and amyloid or tau PET.


Sujet(s)
Maladie d'Alzheimer , Angiopathies intracrâniennes , Dysfonctionnement cognitif , Humains , Maladie d'Alzheimer/imagerie diagnostique , Maladie d'Alzheimer/complications , Protéines tau , Peptides bêta-amyloïdes , Imagerie par résonance magnétique , Dysfonctionnement cognitif/complications , Angiopathies intracrâniennes/imagerie diagnostique , Tomographie par émission de positons , Amyloïde , Marqueurs biologiques
12.
Neurology ; 101(2): e178-e188, 2023 07 11.
Article de Anglais | MEDLINE | ID: mdl-37202168

RÉSUMÉ

BACKGROUND AND OBJECTIVES: ß-Amyloid (Aß) plaques can co-occur with Lewy-related pathology in patients with dementia with Lewy bodies (DLB), but Aß load at prodromal stages of DLB still needs to be elucidated. We investigated Aß load on PET throughout the DLB continuum, from an early prodromal stage of isolated REM sleep behavior disorder (iRBD) to a stage of mild cognitive impairment with Lewy bodies (MCI-LB), and finally DLB. METHODS: We performed a cross-sectional study in patients with a diagnosis of iRBD, MCI-LB, or DLB from the Mayo Clinic Alzheimer Disease Research Center. Aß levels were measured by Pittsburgh compound B (PiB) PET, and global cortical standardized uptake value ratio (SUVR) was calculated. Global cortical PiB SUVR values from each clinical group were compared with each other and with those of cognitively unimpaired (CU) individuals (n = 100) balanced on age and sex using analysis of covariance. We used multiple linear regression testing for interaction to study the influences of sex and APOE ε4 status on PiB SUVR along the DLB continuum. RESULTS: Of the 162 patients, 16 had iRBD, 64 had MCI-LB, and 82 had DLB. Compared with CU individuals, global cortical PiB SUVR was higher in those with DLB (p < 0.001) and MCI-LB (p = 0.012). The DLB group included the highest proportion of Aß-positive patients (60%), followed by MCI-LB (41%), iRBD (25%), and finally CU (19%). Global cortical PiB SUVR was higher in APOE ε4 carriers compared with that in APOE ε4 noncarriers in MCI-LB (p < 0.001) and DLB groups (p = 0.049). Women had higher PiB SUVR with older age compared with men across the DLB continuum (ß estimate = 0.014, p = 0.02). DISCUSSION: In this cross-sectional study, levels of Aß load was higher further along the DLB continuum. Whereas Aß levels were comparable with those in CU individuals in iRBD, a significant elevation in Aß levels was observed in the predementia stage of MCI-LB and in DLB. Specifically, APOE ε4 carriers had higher Aß levels than APOE ε4 noncarriers, and women tended to have higher Aß levels than men as they got older. These findings have important implications in targeting patients within the DLB continuum for clinical trials of disease-modifying therapies.


Sujet(s)
Maladie d'Alzheimer , Dysfonctionnement cognitif , Maladie à corps de Lewy , Mâle , Humains , Femelle , Maladie à corps de Lewy/anatomopathologie , Peptides bêta-amyloïdes/analyse , Études transversales , Apolipoprotéine E4/génétique , Tomographie par émission de positons , Maladie d'Alzheimer/imagerie diagnostique , Dysfonctionnement cognitif/imagerie diagnostique
13.
Neuroradiol J ; 36(6): 665-673, 2023 Dec.
Article de Anglais | MEDLINE | ID: mdl-37118867

RÉSUMÉ

BACKGROUND AND PURPOSE: : Post-shunt MRI is usually performed at 1.5T under the general assumption that shunt-related susceptibility artifacts would be greater at higher field strengths. PURPOSE: The purpose is to show that imaging post-shunt idiopathic normal pressure hydrocephalus (iNPH) patients at 3T is feasible and with reduced artifacts as compared to 1.5T. METHODS: We manually measured transverse dimensions of artifact at the levels of lateral ventricles, cerebral aqueduct, and cerebellar hemisphere. Areas/volumes of artifacts were calculated assuming an elliptic/ellipsoid shape. Relative extent of shunt-related artifact between field strengths was rated by 3 readers on a 5-point Likert scale. A Wilcoxon Signed Rank Test was used to compare artifact at 1.5T vs 3T for each sequence, with a significance level set at p < 0.05. RESULTS: Artifact areas were calculated in 22 iNPH patients; artifacts were on average smaller at 3T vs 1.5T on MPRAGE, DWI, and GRE sequences. On T2 FLAIR and T2 FSE, artifacts at 3T were larger than 1.5T. On the qualitative analysis, artifact effects were less at 3T vs 1.5T on DWI, greater at 3T on T2 FSE, and had mixed results on GRE. CONCLUSION: Our results indicate feasibility of post-shunt imaging with the CERTAS Plus valve at 3T based on shunt-related artifact that is less than or equal in extent to that on 1.5T on most standard clinical imaging sequences. Our findings, corroborated by the qualitative image review, suggest that dedicated clinical imaging sequences for devices may allow for reduction in artifact extent at both 1.5T and 3T.


Sujet(s)
Artéfacts , Hydrocéphalie chronique de l'adulte , Humains , Hydrocéphalie chronique de l'adulte/imagerie diagnostique , Imagerie par résonance magnétique/méthodes , Interprétation d'images assistée par ordinateur/méthodes
14.
Brain Commun ; 5(2): fcad058, 2023.
Article de Anglais | MEDLINE | ID: mdl-37013176

RÉSUMÉ

From a complex systems perspective, clinical syndromes emerging from neurodegenerative diseases are thought to result from multiscale interactions between aggregates of misfolded proteins and the disequilibrium of large-scale networks coordinating functional operations underpinning cognitive phenomena. Across all syndromic presentations of Alzheimer's disease, age-related disruption of the default mode network is accelerated by amyloid deposition. Conversely, syndromic variability may reflect selective neurodegeneration of modular networks supporting specific cognitive abilities. In this study, we leveraged the breadth of the Human Connectome Project-Aging cohort of non-demented individuals (N = 724) as a normative cohort to assess the robustness of a biomarker of default mode network dysfunction in Alzheimer's disease, the network failure quotient, across the aging spectrum. We then examined the capacity of the network failure quotient and focal markers of neurodegeneration to discriminate patients with amnestic (N = 8) or dysexecutive (N = 10) Alzheimer's disease from the normative cohort at the patient level, as well as between Alzheimer's disease phenotypes. Importantly, all participants and patients were scanned using the Human Connectome Project-Aging protocol, allowing for the acquisition of high-resolution structural imaging and longer resting-state connectivity acquisition time. Using a regression framework, we found that the network failure quotient related to age, global and focal cortical thickness, hippocampal volume, and cognition in the normative Human Connectome Project-Aging cohort, replicating previous results from the Mayo Clinic Study of Aging that used a different scanning protocol. Then, we used quantile curves and group-wise comparisons to show that the network failure quotient commonly distinguished both dysexecutive and amnestic Alzheimer's disease patients from the normative cohort. In contrast, focal neurodegeneration markers were more phenotype-specific, where the neurodegeneration of parieto-frontal areas associated with dysexecutive Alzheimer's disease, while the neurodegeneration of hippocampal and temporal areas associated with amnestic Alzheimer's disease. Capitalizing on a large normative cohort and optimized imaging acquisition protocols, we highlight a biomarker of default mode network failure reflecting shared system-level pathophysiological mechanisms across aging and dysexecutive and amnestic Alzheimer's disease and biomarkers of focal neurodegeneration reflecting distinct pathognomonic processes across the amnestic and dysexecutive Alzheimer's disease phenotypes. These findings provide evidence that variability in inter-individual cognitive impairment in Alzheimer's disease may relate to both modular network degeneration and default mode network disruption. These results provide important information to advance complex systems approaches to cognitive aging and degeneration, expand the armamentarium of biomarkers available to aid diagnosis, monitor progression and inform clinical trials.

15.
Brain ; 146(5): 2029-2044, 2023 05 02.
Article de Anglais | MEDLINE | ID: mdl-36789483

RÉSUMÉ

Staging the severity of Alzheimer's disease pathology using biomarkers is useful for therapeutic trials and clinical prognosis. Disease staging with amyloid and tau PET has face validity; however, this would be more practical with plasma biomarkers. Our objectives were, first, to examine approaches for staging amyloid and tau PET and, second, to examine prediction of amyloid and tau PET stages using plasma biomarkers. Participants (n = 1136) were enrolled in either the Mayo Clinic Study of Aging or the Alzheimer's Disease Research Center; had a concurrent amyloid PET, tau PET and blood draw; and met clinical criteria for cognitively unimpaired (n = 864), mild cognitive impairment (n = 148) or Alzheimer's clinical syndrome with dementia (n = 124). The latter two groups were combined into a cognitively impaired group (n = 272). We used multinomial regression models to estimate discrimination [concordance (C) statistics] among three amyloid PET stages (low, intermediate, high), four tau PET stages (Braak 0, 1-2, 3-4, 5-6) and a combined amyloid and tau PET stage (none/low versus intermediate/high severity) using plasma biomarkers as predictors separately within unimpaired and impaired individuals. Plasma analytes, p-tau181, Aß1-42 and Aß1-40 (analysed as the Aß42/Aß40 ratio), glial fibrillary acidic protein and neurofilament light chain were measured on the HD-X Simoa Quanterix platform. Plasma p-tau217 was also measured in a subset (n = 355) of cognitively unimpaired participants using the Lilly Meso Scale Discovery assay. Models with all Quanterix plasma analytes along with risk factors (age, sex and APOE) most often provided the best discrimination among amyloid PET stages (C = 0.78-0.82). Models with p-tau181 provided similar discrimination of tau PET stages to models with all four plasma analytes (C = 0.72-0.85 versus C = 0.73-0.86). Discriminating a PET proxy of intermediate/high from none/low Alzheimer's disease neuropathological change with all four Quanterix plasma analytes was excellent but not better than p-tau181 only (C = 0.88 versus 0.87 for unimpaired and C = 0.91 versus 0.90 for impaired). Lilly p-tau217 outperformed the Quanterix p-tau181 assay for discriminating high versus intermediate amyloid (C = 0.85 versus 0.74) but did not improve over a model with all Quanterix plasma analytes and risk factors (C = 0.85 versus 0.83). Plasma analytes along with risk factors can discriminate between amyloid and tau PET stages and between a PET surrogate for intermediate/high versus none/low neuropathological change with accuracy in the acceptable to excellent range. Combinations of plasma analytes are better than single analytes for many staging predictions with the exception that Quanterix p-tau181 alone usually performed equivalently to combinations of Quanterix analytes for tau PET discrimination.


Sujet(s)
Maladie d'Alzheimer , Dysfonctionnement cognitif , Humains , Protéines amyloïdogènes , Marqueurs biologiques , Vieillissement , Protéines tau , Peptides bêta-amyloïdes
16.
J Magn Reson Imaging ; 57(5): 1443-1450, 2023 05.
Article de Anglais | MEDLINE | ID: mdl-35894392

RÉSUMÉ

BACKGROUND: Focally enlarged sulci (FES) are areas of proposed extraventricular fluid entrapment that may occur within idiopathic normal pressure hydrocephalus (iNPH) with radiographic evidence of disproportionately enlarged subarachnoid-space hydrocephalus (DESH), and should be differentiated from atrophy. PURPOSE: To evaluate for change in FES size and pituitary height after shunt placement in iNPH. STUDY TYPE: Retrospective. SUBJECTS: A total of 125 iNPH patients who underwent shunt surgery and 40 age-matched controls. FIELD STRENGTH/SEQUENCE: 1.5 T and 3 T. Axial T2w FLAIR, 3D T1w MPRAGE, 2D sagittal T1w. ASSESSMENT: FES were measured in three dimensions and volume was estimated by assuming an ellipsoid shape. Pituitary gland height was measured in the mid third of the gland in iNPH patients and controls. STATISTICAL TESTS: Wilcoxon signed-rank test for comparisons between MRI measurements; Wilcoxon rank sum test for comparison of cases/controls. Significance level was P < 0.05. RESULTS: Fifty percent of the patients had FES. FES volume significantly decreased between the pre and first postshunt MRI by a median of 303 mm3 or 30.0%. Pituitary gland size significantly increased by 0.48 mm or 14.4%. FES decreased significantly by 190 mm3 or 23.1% and pituitary gland size increased significantly by 0.25 mm or 6% between the first and last postshunt MRI. DATA CONCLUSION: Decrease in size of FES after shunt placement provides further evidence that these regions are due to disordered cerebrospinal fluid (CSF) dynamics and should not be misinterpreted as atrophy. A relatively smaller pituitary gland in iNPH patients that normalizes after shunt is a less-well recognized feature of altered CSF dynamics. EVIDENCE LEVEL: 3 TECHNICAL EFFICACY: Stage 2.


Sujet(s)
Hydrocéphalie chronique de l'adulte , Humains , Hydrocéphalie chronique de l'adulte/anatomopathologie , Hydrocéphalie chronique de l'adulte/chirurgie , Études rétrospectives , Espace sous-arachnoïdien/anatomopathologie , Espace sous-arachnoïdien/chirurgie , Imagerie par résonance magnétique/méthodes , Atrophie/anatomopathologie
17.
Neurobiol Aging ; 117: 189-200, 2022 09.
Article de Anglais | MEDLINE | ID: mdl-35764037

RÉSUMÉ

We evaluated the relationship between baseline CSF p-tau181 and the rate of tau PET change in the temporal meta-ROI and entorhinal cortex (ERC) and how it varied by amyloid level (CSF Aß42 or amyloid PET) among 143 individuals from the Mayo Clinic Study of Aging and Mayo Alzheimer Disease Research Center. Higher CSF p-tau181, lower CSF Aß42, and higher amyloid PET levels were associated with faster rates of tau PET change in both the temporal meta-ROI and ERC. In the temporal meta-ROI, longitudinal tau PET accumulation occurred primarily in participants with abnormal biomarker levels and a diagnosis of dementia, which supports the hypothesis that tau aggregation begins later in the disease process. Compared to the temporal meta-ROI, the ERC showed greater change in tau PET in non-demented participants but less change in later disease stages, supporting ERC as a more sensitive marker of early tau PET changes but with less dynamic range over the disease spectrum. We found both amyloid and CSF p-tau181 were associated with rates of tau PET change but there were some differences in associations by region, amyloid biomarker, and disease stage.


Sujet(s)
Maladie d'Alzheimer , Protéines tau , Vieillissement , Maladie d'Alzheimer/imagerie diagnostique , Peptides bêta-amyloïdes , Marqueurs biologiques , Humains , Tomographie par émission de positons
18.
Neuroimage ; 258: 119357, 2022 09.
Article de Anglais | MEDLINE | ID: mdl-35660089

RÉSUMÉ

It is well known that de-identified research brain images from MRI and CT can potentially be re-identified using face recognition; however, this has not been examined for PET images. We generated face reconstruction images of 182 volunteers using amyloid, tau, and FDG PET scans, and we measured how accurately commercial face recognition software (Microsoft Azure's Face API) automatically matched them with the individual participants' face photographs. We then compared this accuracy with the same experiments using participants' CT and MRI. Face reconstructions from PET images from PET/CT scanners were correctly matched at rates of 42% (FDG), 35% (tau), and 32% (amyloid), while CT were matched at 78% and MRI at 97-98%. We propose that these recognition rates are high enough that research studies should consider using face de-identification ("de-facing") software on PET images, in addition to CT and structural MRI, before data sharing. We also updated our mri_reface de-identification software with extended functionality to replace face imagery in PET and CT images. Rates of face recognition on de-faced images were reduced to 0-4% for PET, 5% for CT, and 8% for MRI. We measured the effects of de-facing on regional amyloid PET measurements from two different measurement pipelines (PETSurfer/FreeSurfer 6.0, and one in-house method based on SPM12 and ANTs), and these effects were small: ICC values between de-faced and original images were > 0.98, biases were <2%, and median relative errors were < 2%. Effects on global amyloid PET SUVR measurements were even smaller: ICC values were 1.00, biases were <0.5%, and median relative errors were also <0.5%.


Sujet(s)
Reconnaissance faciale , Tomographie par émission de positons couplée à la tomodensitométrie , Amyloïde , Encéphale/imagerie diagnostique , Fluorodésoxyglucose F18 , Humains , Imagerie par résonance magnétique/méthodes , Tomographie par émission de positons/méthodes
19.
Brain Commun ; 4(2): fcac013, 2022.
Article de Anglais | MEDLINE | ID: mdl-35415608

RÉSUMÉ

Mild cognitive impairment with the core clinical features of dementia with Lewy bodies is recognized as a prodromal stage of dementia with Lewy bodies. Although grey matter atrophy has been demonstrated in prodromal dementia with Lewy bodies, longitudinal rates of atrophy during progression to probable dementia with Lewy bodies are unknown. We investigated the regional patterns of cross-sectional and longitudinal rates of grey matter atrophy in prodromal dementia with Lewy bodies, including those who progressed to probable dementia with Lewy bodies. Patients with mild cognitive impairment with at least one core clinical feature of dementia with Lewy bodies (mean age = 70.5; 95% male), who were enrolled in the Mayo Clinic Alzheimer's Disease Research Center and followed for at least two clinical evaluations and MRI examinations, were included (n = 56). A cognitively unimpaired control group (n = 112) was matched 2:1 to the patients with mild cognitive impairment by age and sex. Patients either remained stable (n = 28) or progressed to probable dementia with Lewy bodies (n = 28) during a similar follow-up period and pathologic confirmation was available in a subset of cases (n = 18). Cross-sectional and longitudinal rates of grey matter atrophy were assessed using voxel-based and atlas-based region of interest analyses. At baseline, prodromal dementia with Lewy bodies was characterized by atrophy in the nucleus basalis of Meynert both in those who remained stable and those who progressed to probable dementia with Lewy bodies (P < 0.05 false discovery rate corrected). Increase in longitudinal grey matter atrophy rates were widespread, with greatest rates of atrophy observed in the enthorhinal and parahippocampal cortices, temporoparietal association cortices, thalamus and the basal ganglia, in mild cognitive impairment patients who progressed to probable dementia with Lewy bodies at follow-up (P < 0.05 false discovery rate corrected). Rates of inferior temporal atrophy were associated with greater rates of worsening on the clinical dementia rating-sum of boxes. Seventeen of the 18 (94%) autopsied cases had Lewy body disease. Results show that atrophy in the nucleus basalis of Meynert is a feature of prodromal dementia with Lewy bodies regardless of proximity to progression to probable dementia with Lewy bodies. Longitudinally, grey matter atrophy progresses in regions with significant cholinergic innervation, in alignment with clinical disease progression, with widespread and accelerated rates of atrophy in patients who progress to probable dementia with Lewy bodies. Given the prominent neurodegeneration in the cholinergic system, patients with prodromal dementia with Lewy bodies may be candidates for cholinesterase inhibitor treatment.

20.
Brain Commun ; 4(2): fcac017, 2022.
Article de Anglais | MEDLINE | ID: mdl-35310829

RÉSUMÉ

Dementia and mortality rates rise inexorably with age and consequently interact. However, because of the major logistical difficulties in accounting for both outcomes in a defined population, very little work has examined how risk factors and biomarkers for incident dementia are influenced by competing mortality. The objective of this study was to examine long-term associations between amyloid PET, APOE ɛ4, sex, education and cardiovascular/metabolic conditions, and hazard and absolute risk of dementia and mortality in individuals without dementia at enrolment. Participants were enrolled in the Mayo Clinic Study of Aging, a population-based study of cognitive ageing in Olmsted County, MN, USA. All were without dementia and were age 55-92 years at enrolment and were followed longitudinally. Predictor variables were amyloid PET, APOE ɛ4 status, sex, education, cardiovascular/metabolic conditions and age. The main outcomes were incident dementia and mortality. Multivariable, multi-state models were used to estimate mortality and incident dementia rates and absolute risk of dementia and mortality by predictor variable group. Of the 4984 participants in the study, 4336 (87%) were cognitively unimpaired and 648 (13%) had mild cognitive impairment at enrolment. The median age at enrolment was 75 years; 2463 (49%) were women. The median follow-up time was 9.4 years (7.5 years after PET). High versus normal amyloid (hazard ratio 2.11, 95% confidence interval 1.43-2.79), APOE ɛ4 (women: hazard ratio 2.24, 95% confidence interval 1.80-2.77; men: hazard ratio 1.37, 95% confidence interval 1.09-1.71), older age and two additional cardiovascular/metabolic conditions (hazard ratio 1.37, 95% confidence interval 1.22-1.53) were associated with the increased hazard of dementia (all P < 0.001). Among APOE ɛ4 carriers with elevated amyloid, remaining lifetime risk of dementia at age 65 years was greater in women [74% (95% confidence interval 65-84%) high and 58% (95% confidence interval 52-65%) moderate amyloid], than men [62% (95% confidence interval 52-73%) high and 44% (95% confidence interval 35-53%) moderate amyloid]. Overall, the hazard and absolute risk of dementia varied considerably by predictor group. The absolute risk of dementia associated with predictors characteristic of Alzheimer's disease was greater in women than men while at the same time the combination of APOE ɛ4 non-carrier with normal amyloid was more protective in women than men. This set of findings may be attributed in part to different biological effects and in part to lower mortality rates in women.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE