Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Environ Pollut ; 267: 115444, 2020 Dec.
Article de Anglais | MEDLINE | ID: mdl-32866874

RÉSUMÉ

The high frequency of acid rain in southern China has captured public and official concern since 1980s. Subsequently, gas emission reduction measures have been implemented to improve the air quality. Variations in SO2 emission intensities can influence the sulfur and oxygen isotopic compositions of sulfate in rainwater, since atmospheric sulfate is mainly formed via the oxidation of sulfur gases from natural and anthropogenic sources. To evaluate the impacts of emission reduction measures on atmospheric sulfate, the seasonal and long-term trends in stable isotopic compositions of sulfate in rainwater in Guizhou province, southwestern China have been investigated based on rainwater samples collected from June 2016 to June 2018 and literature investigation (2000-2010).The results reveal that coal combustion remains a major contributor to sulfate in rainwater, although its SO2 emission has significantly decreased over the past two decades. The δ34Ssulfate and δ18Osulfate values in rainwater are negatively correlated and have significant seasonal changes. The seasonality in δ34Ssulfate has been interpreted as due to the changes in contributions of dimethyl sulfide and coal combustion, while the seasonal pattern of δ18Osulfate is consistent with that of δ18Owater values, indicating sulfate in rainwater is mainly formed by heterogeneous oxidation of SO2. Combined with the data from previous studies (Xiao and Liu, 2002; Liu, 2007; Xiao et al., 2009; Xiao et al., 2014), we found that the volume weighted mean δ34S values of sulfate in rainwater in Guizhou province show a marked increase between 2001 and 2018, indicating that the 34S-depleted SO2 emission from coal combustion has declined during this period. Furthermore, the synchronous changes in δ34S values, sulfate concentration and pH values of rainwater suggest that the frequency of acid rain in Guizhou province has dropped over the past two decades, which is likely to result from the emission reduction measures taken in Guizhou province.


Sujet(s)
Pluies acides , Pluies acides/analyse , Chine , Surveillance de l'environnement , Isotopes de l'oxygène/analyse , Soufre , Isotopes du soufre/analyse
2.
Plant Pathol J ; 35(2): 91-99, 2019 Apr.
Article de Anglais | MEDLINE | ID: mdl-31007639

RÉSUMÉ

Mitogen-activated protein kinase (MAPK) cascades in fungi are ubiquitously conserved signaling pathways that regulate stress responses, vegetative growth, pathogenicity, and many other developmental processes. Previously, we reported that the AbSte7 gene, which encodes a mitogen-activated protein kinase kinase (MAPKK) in Alternaria brassicicola, plays a central role in pathogenicity against host cabbage plants. In this research, we further characterized the role of AbSte7 in the pathogenicity of this fungus using ΔAbSte7 mutants. Disruption of the AbSte7 gene of A. brassicicola reduced accumulation of metabolites toxic to the host plant in liquid culture media. The ΔAbSte7 mutants could not efficiently detoxify cruciferous phytoalexin brassinin, possibly due to reduced expression of the brassinin hydrolase gene involved in detoxifying brassinin. Disruption of the AbSte7 gene also severely impaired fungal detoxification of reactive oxygen species. AbSte7 gene disruption reduced the enzymatic activity of cell wall-degrading enzymes, including cellulase, ß-glucosidase, pectin methylesterase, polymethyl-galacturonase, and polygalacturonic acid transeliminase, during host plant infection. Altogether, the data strongly suggest the MAPKK gene AbSte7 plays a pivotal role in A. brassicicola during host infection by regulating multiple steps, and thus increasing pathogenicity and inhibiting host defenses.

3.
Environ Monit Assess ; 188(4): 227, 2016 Apr.
Article de Anglais | MEDLINE | ID: mdl-26972927

RÉSUMÉ

The Liao River drainage basin, which is one of China's seven major rivers basins, is located in northeast China. This region is characterized by important industrial bases including steel factories and oil and chemical plants, all of which have the potential to contribute pollutants to the drainage basin. In this study, 16 polycyclic aromatic hydrocarbons (PAHs) in water and suspended particulate matter (SPM) in the major rivers of the Liao River drainage basin were identified and quantified by gas chromatography mass spectrometry (GC/MS). The total PAH concentrations ranged from 0.4 to 76.5 µg/g (dry weight) in SPM and 32.6 to 108 ng/L in surface water, respectively. Low-ring PAHs (including two- and three-ring PAHs) were dominant in all PAH samples, and the level of low-ring PAHs in surface water was higher than that in SPM. The proportion of two-ring PAHs was the highest, accounting for an average of 68.2 % of the total PAHs in surface water, while the level of three-ring PAHs was the highest in SPM, with an average of 66.3 %. When compared with other river systems, the concentrations of PAHs in the Liao River drainage basin were lower. Identification of the emission sources based on diagnostic ratios suggested petroleum and fossil fuel combustion were important contribution to PAHs in the study area.


Sujet(s)
Surveillance de l'environnement , Hydrocarbures aromatiques polycycliques/analyse , Rivières/composition chimique , Polluants chimiques de l'eau/analyse , Chine , Chromatographie gazeuse-spectrométrie de masse , Sédiments géologiques/composition chimique , Matière particulaire/analyse , Pétrole/analyse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...