Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Genes (Basel) ; 10(12)2019 11 29.
Article de Anglais | MEDLINE | ID: mdl-31795411

RÉSUMÉ

Arabidopsis naturally occurring populations have allowed for the identification of considerable genetic variation remodeled by adaptation to different environments and stress conditions. Water is a key resource that limits plant growth, and its availability is initially sensed by root tissues. The root's ability to adjust its physiology and morphology under water deficit makes this organ a useful model to understand how plants respond to water stress. Here, we used hyperosmotic shock stress treatments in different Arabidopsis accessions to analyze the root cell morphological responses. We found that osmotic stress conditions reduced root growth and root apical meristem (RAM) size, promoting premature cell differentiation without affecting the stem cell niche morphology. This phenotype was accompanied by a cluster of small epidermal and cortex cells with radial expansion and root hairs at the transition to the elongation zone. We also found this radial expansion with root hairs when plants are grown under hypoosmotic conditions. Finally, root growth was less affected by osmotic stress in the Sg-2 accession followed by Ws, Cvi-0, and Col-0; however, after a strong osmotic stress, Sg-2 and Cvi-0 were the most resilience accessions. The sensitivity differences among these accessions were not explained by stress-related gene expression. This work provides new cellular insights on the Arabidopsis root phenotypic variability and plasticity to osmotic stress.


Sujet(s)
Protéines d'Arabidopsis/génétique , Arabidopsis/classification , Arabidopsis/croissance et développement , Racines de plante/croissance et développement , Arabidopsis/cytologie , Arabidopsis/génétique , Différenciation cellulaire , Analyse de profil d'expression de gènes , Régulation de l'expression des gènes au cours du développement , Régulation de l'expression des gènes végétaux , Pression osmotique , Racines de plante/cytologie , Racines de plante/génétique , Niche de cellules souches , Stress physiologique
2.
Plant Physiol ; 162(2): 1164-77, 2013 Jun.
Article de Anglais | MEDLINE | ID: mdl-23596192

RÉSUMÉ

ANTI-SILENCING FUNCTION1 (ASF1) is a key histone H3/H4 chaperone that participates in a variety of DNA- and chromatin-related processes, including DNA repair, where chromatin assembly and disassembly are of primary relevance. Information concerning the role of ASF1 proteins in the post-ultraviolet (UV) response in higher plants is currently limited. In Arabidopsis (Arabidopsis thaliana), an initial analysis of in vivo localization of ASF1A and ASF1B indicates that both proteins are mainly expressed in proliferative tissues. In silico promoter analysis identified ASF1A and ASF1B as potential targets of E2F corresponds to Adenovirus E2 Binding Factor. [corrected]. These observations were experimentally validated, both in vitro, by electrophoretic mobility shift assays, and in vivo, by chromatin immunoprecipitation assays and expression analysis using transgenic plants with altered levels of different E2F transcription factors. These data suggest that ASF1A and ASF1B are regulated during cell cycle progression through E2F transcription factors. In addition, we found that ASF1A and ASF1B are associated with the UV-B-induced DNA damage response in Arabidopsis. Transcript levels of ASF1A and ASF1B were increased following UV-B treatment. Consistent with a potential role in UV-B response, RNA interference-silenced plants of both genes showed increased sensitivity to UV-B compared with wild-type plants. Finally, by coimmunoprecipitation analysis, we found that ASF1 physically interacts with amino-terminal acetylated histones H3 and H4 and with acetyltransferases of the Histone Acetyl Transferase subfamily, which are known to be involved in cell cycle control and DNA repair, among other functions. Together, we provide evidence that ASF1A and ASF1B are regulated by cell cycle progression and are involved in DNA repair after UV-B irradiation.


Sujet(s)
Protéines d'Arabidopsis/métabolisme , Arabidopsis/physiologie , Altération de l'ADN/effets des radiations , Réparation de l'ADN/physiologie , Facteurs de transcription E2F/métabolisme , Arabidopsis/cytologie , Arabidopsis/effets des radiations , Protéines d'Arabidopsis/génétique , Sites de fixation , Cycle cellulaire/génétique , Assemblage et désassemblage de la chromatine , Facteurs de transcription E2F/génétique , Histone acetyltransferases/génétique , Histone acetyltransferases/métabolisme , Histone/métabolisme , Végétaux génétiquement modifiés , Rayons ultraviolets
3.
J Exp Bot ; 62(8): 2925-37, 2011 May.
Article de Anglais | MEDLINE | ID: mdl-21307385

RÉSUMÉ

Deleterious effects of UV-B radiation on DNA include the formation of cyclobutane pyrimidine dimers (CPDs) and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). These lesions must be repaired to maintain the integrity of DNA and provide genetic stability. Of the several repair systems involved in the recognition and removal of UV-B-induced lesions in DNA, the focus in the present study was on the mismatch repair system (MMR). The contribution of MutSα (MSH2-MSH6) to UV-induced DNA lesion repair and cell cycle regulation was investigated. MSH2 and MSH6 genes in Arabidopsis and maize are up-regulated by UV-B, indicating that MMR may have a role in UV-B-induced DNA damage responses. Analysis of promoter sequences identified MSH6 as a target of the E2F transcription factors. Using electrophoretic mobility shift assays, MSH6 was experimentally validated as an E2F target gene, suggesting an interaction between MMR genes and the cell cycle control. Mutations in MSH2 or MSH6 caused an increased accumulation of CPDs relative to wild-type plants. In addition, msh2 mutant plants showed a different expression pattern of cell cycle marker genes after the UV-B treatment when compared with wild-type plants. Taken together, these data provide evidence that plant MutSα is involved in a UV-B-induced DNA damage response pathway.


Sujet(s)
Arabidopsis/génétique , Altération de l'ADN/génétique , Régulation de l'expression des gènes végétaux/effets des radiations , Gènes de plante/génétique , Protéines végétales/génétique , Rayons ultraviolets , Zea mays/génétique , Arabidopsis/effets des radiations , Protéines d'Arabidopsis/génétique , Protéines d'Arabidopsis/métabolisme , Séquence nucléotidique , Cycle cellulaire/génétique , Cycle cellulaire/effets des radiations , Réparation de mésappariement de l'ADN/génétique , ADN des plantes/métabolisme , Facteurs de transcription E2F/métabolisme , Test de retard de migration électrophorétique , Homozygote , Protéine-2 homologue de MutS/génétique , Mutation/génétique , Feuilles de plante/génétique , Feuilles de plante/effets des radiations , Protéines végétales/métabolisme , Dimères de pyrimidine/métabolisme , ARN messager/génétique , ARN messager/métabolisme , Transcription génétique/effets des radiations , Zea mays/effets des radiations
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE