Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Malar J ; 18(1): 327, 2019 Sep 23.
Article de Anglais | MEDLINE | ID: mdl-31547821

RÉSUMÉ

BACKGROUND: Different antigens are needed to characterize Plasmodium falciparum infection in terms of seroreactivity and targets for invasion inhibition, in order to guide and identify the proper use of such proteins as tools for the development of serological markers and/or as vaccine candidates. METHODS: IgG responses in 84 serum samples from individuals with P. falciparum infection [classified as symptomatic (Sym) or asymptomatic (Asym)], or acute Plasmodium vivax infection, from the Peruvian Amazon region, were evaluated by enzyme-linked immunosorbent assays specific for a baculovirus-produced recombinant protein P. falciparum Merozoite Surface Protein 10 (rMSP10) and for non-EGF region selected peptides of PfMSP10 selected by a bioinformatics tool (PfMSP10-1, PfMSP10-2 and PfMSP10-3). Monoclonal antibodies against the selected peptides were evaluated by western blotting, confocal microscopy and inhibition invasion assays. RESULTS: Seroreactivity analysis of the P. falciparum Sym- and Asym-infected individuals against rMSP10 showed a higher response as compared to the individuals with P. vivax acute infection. IgG responses against peptide PfMSP10-1 were weak. Interestingly high IgG response was found against peptide PfMSP10-2 and the combination of peptides PfMSP10-1 + PfMSP10-2. Monoclonal antibodies were capable of detecting native PfMSP10 on purified schizonts by western blot and confocal microscopy. A low percentage of inhibition of merozoite invasion of erythrocytes in vitro was observed when the monoclonal antibodies were compared with the control antibody against AMA-1 antigen. Further studies are needed to evaluate the role of PfMSP10 in the merozoite invasion. CONCLUSIONS: The rMSP10 and the PfMSP10-2 peptide synthesized for this study may be useful antigens for evaluation of P. falciparum malaria exposure in Sym and Asym individuals from the Peruvian Amazon region. Moreover, these antigens can be used for further investigation of the role of this protein in other malaria-endemic areas.


Sujet(s)
Antigènes de protozoaire/analyse , Paludisme à Plasmodium falciparum/diagnostic , Plasmodium falciparum/isolement et purification , Surveillance de la population/méthodes , Protéines de protozoaire/analyse , Humains , Pérou , Études séroépidémiologiques
2.
Am J Trop Med Hyg ; 100(1): 83-89, 2019 01.
Article de Anglais | MEDLINE | ID: mdl-30457102

RÉSUMÉ

Quantitative polymerase chain reaction (qPCR) for Toxoplasma gondii multicopy genes has emerged as a promising strategy for sensitive detection of parasite DNA. qPCR can be performed from blood samples, which are minimally invasive to collect. However, there is no consensus about what type of blood specimen yields the best sensitivity. The development of a novel protocol for qPCR detection of T. gondii using blood clot, involving an appropriate DNA extraction method and the use of an internal amplification control to monitor the reaction is presented in the current study. Assays directed to the B1 and REP529 genes were performed in spiked specimens of whole blood, guanidine-ethylenediaminetetraacetic acid blood, and clot. The clot-based qPCR was shown to be more sensitive when compared with other types of specimens, detecting five and 0.05 T. gondii genomes, using B1 and REP529 targets, respectively. Finally, a comparative analysis with samples from HIV patients with clinical suspicion of toxoplasmosis was performed, demonstrating the detection of four positive suspected cases with clots compared with only one using guanidine-ethylenediaminetetraacetic acid blood. The high analytical sensitivity and the cost-effective advantages offered by clot supports this methodology as a good laboratory tool to monitor parasite burden.


Sujet(s)
Charge parasitaire/méthodes , Réaction de polymérisation en chaîne/méthodes , Thrombose/parasitologie , Toxoplasma/isolement et purification , Toxoplasmose/diagnostic , Adulte , ADN des protozoaires/génétique , Génome de protozoaire , Infections à VIH/sang , Infections à VIH/parasitologie , Humains , Techniques de diagnostic moléculaire/méthodes , Sensibilité et spécificité , Toxoplasma/génétique , Toxoplasmose/sang , Jeune adulte
3.
Front Microbiol ; 8: 1905, 2017.
Article de Anglais | MEDLINE | ID: mdl-29033926

RÉSUMÉ

MicroRNAs (miRNAs) are short, endogenous, non-coding, single-stranded RNAs involved in post-transcriptional gene regulation. Although, several miRNAs have been identified in parasitic helminths, there is little information about their identification and function in Taenia. Furthermore, the impact of miRNAs in neurocysticercosis, the brain infection caused by larvae of Taenia solium is still unknown. During chronic infection, T. solium may activate numerous mechanisms aimed to modulate host immune responses. Helminthic miRNAs might also have effects on host mRNA expression and thus play an important role regulating host-parasite interactions. Also, the diagnosis of this disease is difficult and it usually requires neuroimaging and confirmatory serology. Since miRNAs are stable when released, they can be detected in body fluids and therefore have potential to diagnose infection, determine parasite burden, and ascertain effectiveness of treatment or disease progression, for instance. This review discusses the potential roles of miRNAs in T. solium infection, including regulation of host-parasite relationships and their eventual use as diagnostic or disease biomarkers. Additionally, we summarize the bioinformatics resources available for identification of T. solium miRNAs and prediction of their targets.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE