Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Resuscitation ; : 110329, 2024 Jul 24.
Article de Anglais | MEDLINE | ID: mdl-39053835

RÉSUMÉ

BACKGROUND: During resuscitation pulmonary artery pressure (PAP) increases. This reduces left ventricular filling, leading to decreased blood flow. Inhaled nitric oxide (iNO) produces selective pulmonary vasodilation. We hypothesized that iNO would lower PAP during resuscitation resulting in increased survival. METHODS: 30 pigs (40 kg) were subjected to cardiac arrest for 9.5 min after myocardial ischemia induced by coronary artery occlusion of the left anterior descending artery and ventricular fibrillation. During resuscitation, the pigs were randomized to 40 ppm iNO or placebo. The primary outcome was return of spontaneous circulation (ROSC). Pigs achieving ROSC underwent 4-hours intensive care. RESULTS: The ROSC rate was 9/14 (64%) in the control group and 11/16 (69%) in the iNO group (OR 1.2 95%CI [0.3;5.6], p > 0.99). There was no difference in diastolic aorta pressure/PAP ratio (mean difference -0.99 [95% CI: -2.33-0.36], p = 0.14). Mean pulmonary artery pressure was lower in the iNO group 60 and 120 min after ROSC (mean difference: -12.18 mmHg [95%CI: -16.94; -7.43] p < 0.01 and -5.43 [95%CI: -10.39; -0.46] p = 0.03). Troponin I levels in the iNO group were significantly higher 60 and 120 min after ROSC (mean difference: 266105 ng/l [95%CI: 6356; 525855] p = 0.045 and 420049 ng/l [95%CI: 136779; 703320], p = 0.004). The area at risk of the heart was 33% (SD 1) in controls and 34% (SD 1) in the iNO group. The infarct size divided by the area at risk was 55% (SD 3) in controls and 86% (SD 1) in the iNO group, p = 0.01. CONCLUSION: Application of iNO did not improve the rate of ROSC or hemodynamic function but increased myocardial injury.

2.
Trends Genet ; 38(7): 766-781, 2022 07.
Article de Anglais | MEDLINE | ID: mdl-35277298

RÉSUMÉ

Extrachromosomal circular DNA (eccDNA) is a closed-circle, nuclear, nonplasmid DNA molecule found in all tested eukaryotes. eccDNA plays important roles in cancer pathogenesis, evolution of tumor heterogeneity, and therapeutic resistance. It is known under many names, including very large cancer-specific circular extrachromosomal DNA (ecDNA), which carries oncogenes and is often amplified in cancer cells. Our understanding of eccDNA has historically been limited and fragmented. To provide better a context of new and previous research on eccDNA, in this review we give an overview of the various names given to eccDNA at different times. We describe the different mechanisms for formation of eccDNA and the methods used to study eccDNA thus far. Finally, we explore the potential clinical value of eccDNA.


Sujet(s)
ADN circulaire , Tumeurs , ADN/génétique , ADN circulaire/génétique , Humains , Tumeurs/génétique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE