Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 17 de 17
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
bioRxiv ; 2022 Oct 18.
Article de Anglais | MEDLINE | ID: mdl-36299421

RÉSUMÉ

The coronavirus disease 2019 (COVID19) continues to spread despite global vaccination efforts (1). This, alongside the rapid emergence of vaccine resistant variants, creates a need for orthogonal therapeutic strategies targeting more conserved facets of severe acute respiratory syndrome coronavirus (SARS-CoV-2) (2-4). One conserved feature of all coronaviruses is their ability to undergo discontinuous transcription wherein individual open reading frames fuse with the 5'-UTR leader sequence during negative-strand RNA synthesis (5). As such all viral protein coding genes use the same 5'-UTR for translation (6). Using in vitro reporter assays, we demonstrate that the SARS-CoV-2 5'-UTR efficiently initiates protein translation despite its predicted structural complexity. Through a combination of bioinformatic and biochemical assays, we demonstrate that a single METTL3-dependent m6A methylation event in SARS-CoV-2 5'-UTR regulates the rate of translation initiation. We show that m6A likely exerts this effect by destabilizing secondary structure in the 5'-UTR, thereby facilitating access to the ribosomal pre-initiation complex. This discovery opens new avenues for novel therapeutic strategies aimed at controlling the ability of SARS-CoV-2 to replicate in host cells.

2.
Proc Natl Acad Sci U S A ; 119(34): e2110097119, 2022 08 23.
Article de Anglais | MEDLINE | ID: mdl-35969789

RÉSUMÉ

While the role of barrier function in establishing a protective, nutrient-rich, and ionically balanced environment for neurons has been appreciated for some time, little is known about how signaling cues originating in barrier-forming cells participate in maintaining barrier function and influence synaptic activity. We have identified Delta/Notch signaling in subperineurial glia (SPG), a crucial glial type for Drosophila motor axon ensheathment and the blood-brain barrier, to be essential for controlling the expression of matrix metalloproteinase 1 (Mmp1), a major regulator of the extracellular matrix (ECM). Our genetic analysis indicates that Delta/Notch signaling in SPG exerts an inhibitory control on Mmp1 expression. In the absence of this inhibition, abnormally enhanced Mmp1 activity disrupts septate junctions and glial ensheathment of peripheral motor nerves, compromising neurotransmitter release at the neuromuscular junction (NMJ). Temporally controlled and cell type-specific transgenic analysis shows that Delta/Notch signaling inhibits transcription of Mmp1 by inhibiting c-Jun N-terminal kinase (JNK) signaling in SPG. Our results provide a mechanistic insight into the regulation of neuronal health and function via glial-initiated signaling and open a framework for understanding the complex relationship between ECM regulation and the maintenance of barrier function.


Sujet(s)
Protéines de Drosophila , Matrix metalloproteinase 1 , Névroglie , Transmission synaptique , Animaux , Protéines de Drosophila/métabolisme , Drosophila melanogaster , Matrice extracellulaire/métabolisme , Protéines et peptides de signalisation intracellulaire/métabolisme , JNK Mitogen-Activated Protein Kinases/métabolisme , Matrix metalloproteinase 1/métabolisme , Protéines membranaires/métabolisme , Névroglie/métabolisme , Récepteurs Notch/métabolisme , Transduction du signal
3.
Nucleic Acids Res ; 50(17): 9748-9764, 2022 09 23.
Article de Anglais | MEDLINE | ID: mdl-36029115

RÉSUMÉ

Retrograde bone morphogenetic protein (BMP) signaling at the Drosophila neuromuscular junction (NMJ) has served as a paradigm to study TGF-ß-dependent synaptic function and maturation. Yet, how retrograde BMP signaling transcriptionally regulates these functions remains unresolved. Here, we uncover a gene network, enriched for neurotransmission-related genes, that is controlled by retrograde BMP signaling in motor neurons through two Smad-binding cis-regulatory motifs, the BMP-activating (BMP-AE) and silencer (BMP-SE) elements. Unpredictably, both motifs mediate direct gene activation, with no involvement of the BMP derepression pathway regulators Schnurri and Brinker. Genome editing of candidate BMP-SE and BMP-AE within the locus of the active zone gene bruchpilot, and a novel Ly6 gene witty, demonstrated the role of these motifs in upregulating genes required for the maturation of pre- and post-synaptic NMJ compartments. Our findings uncover how Smad-dependent transcriptional mechanisms specific to motor neurons directly orchestrate a gene network required for synaptic maturation by retrograde BMP signaling.


Sujet(s)
Protéines morphogénétiques osseuses/métabolisme , Protéines de Drosophila , Drosophila/métabolisme , Réseaux de régulation génique , Jonction neuromusculaire/métabolisme , Animaux , Animal génétiquement modifié , Drosophila/génétique , Protéines de Drosophila/métabolisme , Facteur de croissance transformant bêta/génétique , Facteur de croissance transformant bêta/métabolisme
4.
Cell Rep ; 39(10): 110911, 2022 06 07.
Article de Anglais | MEDLINE | ID: mdl-35675781

RÉSUMÉ

Genetic perturbances in translational regulation result in defects in cerebellar motor learning; however, little is known about the role of translational mechanisms in the regulation of cerebellar plasticity. We show that genetic removal of 4E-BP, a translational suppressor and target of mammalian target of rapamycin complex 1, results in a striking change in cerebellar synaptic plasticity. We find that cerebellar long-term depression (LTD) at parallel fiber-Purkinje cell synapses is converted to long-term potentiation in 4E-BP knockout mice. Biochemical and pharmacological experiments suggest that increased phosphatase activity largely accounts for the defects in LTD. Our results point to a model in which translational regulation through the action of 4E-BP plays a critical role in establishing the appropriate kinase/phosphatase balance required for normal synaptic plasticity in the cerebellum.


Sujet(s)
Protéines adaptatrices de la transduction du signal , Protéines du cycle cellulaire , Potentialisation à long terme , Dépression synaptique à long terme , Protéines adaptatrices de la transduction du signal/génétique , Animaux , Protéines du cycle cellulaire/génétique , Cervelet/physiologie , Potentialisation à long terme/physiologie , Dépression synaptique à long terme/physiologie , Mammifères , Souris , Plasticité neuronale/physiologie , Phosphoric monoester hydrolases , Cellules de Purkinje/physiologie , Synapses/physiologie
5.
Cell Rep ; 26(7): 1774-1786.e4, 2019 02 12.
Article de Anglais | MEDLINE | ID: mdl-30759389

RÉSUMÉ

Pathogenic mutations in leucine-rich repeat kinase 2 (LRRK2) induce an age-dependent loss of dopaminergic (DA) neurons. We have identified Furin 1, a pro-protein convertase, as a translational target of LRRK2 in DA neurons. Transgenic knockdown of Furin1 or its substrate the bone morphogenic protein (BMP) ligand glass bottom boat (Gbb) protects against LRRK2-induced loss of DA neurons. LRRK2 enhances the accumulation of phosphorylated Mad (pMad) in the nuclei of glial cells in the vicinity of DA neurons but not in DA neurons. Consistently, exposure to paraquat enhances Furin 1 levels in DA neurons and induces BMP signaling in glia. In support of a neuron-glial signaling model, knocking down BMP pathway members only in glia, but not in neurons, can protect against paraquat toxicity. We propose that a neuron-glial BMP-signaling cascade is critical for mediating age-dependent neurodegeneration in two models of Parkinson's disease, thus opening avenues for future therapeutic interventions.


Sujet(s)
Leucine-rich repeat serine-threonine protein kinase-2/génétique , Maladies neurodégénératives/génétique , Névroglie/métabolisme , Humains , Leucine-rich repeat serine-threonine protein kinase-2/métabolisme , Transduction du signal
6.
Cell Rep ; 23(1): 11-22, 2018 04 03.
Article de Anglais | MEDLINE | ID: mdl-29617653

RÉSUMÉ

Throughout the developing nervous system, considerable synaptic re-organization takes place as postsynaptic neurons extend dendrites and incoming axons refine their synapses, strengthening some and eliminating others. It is well accepted that these processes rely on synaptic activity; however, the mechanisms that lead to this developmental reorganization are not fully understood. Here, we explore the regulation of cap-dependent translation, a mechanism known to play a role in synaptic growth and plasticity. Using sympathetic ganglia in α3 nicotinic acetylcholine receptor (nAChR)-knockout (KO) mice, we establish that electrophysiologically silent synapses between preganglionic axons and postsynaptic sympathetic neurons do not refine, and the growth of dendrites and the targeting of synapses on postsynaptic neurons are impaired. Remarkably, genetically removing 4E-BP, a suppressor of cap-dependent translation, from these α3 nAChR-KO mice largely restores these features. We conclude that synaptic connections can re-organize and refine without postsynaptic activity during post-natal development when 4E-BP-regulated cap-dependent translation is enhanced.


Sujet(s)
Protéines de transport/génétique , Phosphoprotéines/génétique , Synapses/métabolisme , Potentiels synaptiques , Protéines adaptatrices de la transduction du signal , Animaux , Protéines du cycle cellulaire , Facteurs d'initiation eucaryotes , Ganglions sympathiques/cytologie , Ganglions sympathiques/métabolisme , Ganglions sympathiques/physiologie , Souris , Récepteurs nicotiniques/génétique , Synapses/physiologie
7.
PLoS Genet ; 14(1): e1007184, 2018 01.
Article de Anglais | MEDLINE | ID: mdl-29373576

RÉSUMÉ

Retrograde signaling is essential for neuronal growth, function and survival; however, we know little about how signaling endosomes might be directed from synaptic terminals onto retrograde axonal pathways. We have identified Khc-73, a plus-end directed microtubule motor protein, as a regulator of sorting of endosomes in Drosophila larval motor neurons. The number of synaptic boutons and the amount of neurotransmitter release at the Khc-73 mutant larval neuromuscular junction (NMJ) are normal, but we find a significant decrease in the number of presynaptic release sites. This defect in Khc-73 mutant larvae can be genetically enhanced by a partial genetic loss of Bone Morphogenic Protein (BMP) signaling or suppressed by activation of BMP signaling in motoneurons. Consistently, activation of BMP signaling that normally enhances the accumulation of phosphorylated form of BMP transcription factor Mad in the nuclei, can be suppressed by genetic removal of Khc-73. Using a number of assays including live imaging in larval motor neurons, we show that loss of Khc-73 curbs the ability of retrograde-bound endosomes to leave the synaptic area and join the retrograde axonal pathway. Our findings identify Khc-73 as a regulator of endosomal traffic at the synapse and modulator of retrograde BMP signaling in motoneurons.


Sujet(s)
Protéines morphogénétiques osseuses/métabolisme , Protéines de Drosophila/physiologie , Endosomes/métabolisme , Kinésine/physiologie , Jonction neuromusculaire/métabolisme , Animaux , Animal génétiquement modifié , Protéines de Drosophila/génétique , Drosophila melanogaster/embryologie , Drosophila melanogaster/génétique , Drosophila melanogaster/métabolisme , Embryon non mammalien , Régulation de l'expression des gènes au cours du développement , Kinésine/génétique , Motoneurones/métabolisme , Terminaisons présynaptiques/métabolisme , Transduction du signal/génétique , Transduction du signal/physiologie , Synapses/métabolisme
8.
Neuron ; 92(6): 1204-1212, 2016 Dec 21.
Article de Anglais | MEDLINE | ID: mdl-27916456

RÉSUMÉ

While beneficial effects of fasting on organismal function and health are well appreciated, we know little about the molecular details of how fasting influences synaptic function and plasticity. Our genetic and electrophysiological experiments demonstrate that acute fasting blocks retrograde synaptic enhancement that is normally triggered as a result of reduction in postsynaptic receptor function at the Drosophila larval neuromuscular junction (NMJ). This negative regulation critically depends on transcriptional enhancement of eukaryotic initiation factor 4E binding protein (4E-BP) under the control of the transcription factor Forkhead box O (Foxo). Furthermore, our findings indicate that postsynaptic 4E-BP exerts a constitutive negative input, which is counteracted by a positive regulatory input from the Target of Rapamycin (TOR). This combinatorial retrograde signaling plays a key role in regulating synaptic strength. Our results provide a mechanistic insight into how cellular stress and nutritional scarcity could acutely influence synaptic homeostasis and functional stability in neural circuits.


Sujet(s)
Protéines de Drosophila/génétique , Jeûne/métabolisme , Protéines et peptides de signalisation intracellulaire/génétique , Muscles squelettiques/métabolisme , Jonction neuromusculaire/métabolisme , Facteurs initiation chaîne peptidique/génétique , Animaux , Protéines de Drosophila/métabolisme , Drosophila melanogaster , Facteurs de transcription Forkhead/génétique , Facteurs de transcription Forkhead/métabolisme , Protéines et peptides de signalisation intracellulaire/métabolisme , Mutation , Plasticité neuronale/génétique , Facteurs initiation chaîne peptidique/métabolisme , Biosynthèse des protéines , Récepteurs ionotropes du glutamate/génétique , Ribosomal Protein S6 Kinases/génétique , Transmission synaptique , Sérine-thréonine kinases TOR/génétique , Sérine-thréonine kinases TOR/métabolisme
9.
Nat Commun ; 7: 12188, 2016 07 19.
Article de Anglais | MEDLINE | ID: mdl-27432119

RÉSUMÉ

Parkinson's disease gene leucine-rich repeat kinase 2 (LRRK2) has been implicated in a number of processes including the regulation of mitochondrial function, autophagy and endocytic dynamics; nevertheless, we know little about its potential role in the regulation of synaptic plasticity. Here we demonstrate that postsynaptic knockdown of the fly homologue of LRRK2 thwarts retrograde, homeostatic synaptic compensation at the larval neuromuscular junction. Conversely, postsynaptic overexpression of either the fly or human LRRK2 transgene induces a retrograde enhancement of presynaptic neurotransmitter release by increasing the size of the release ready pool of vesicles. We show that LRRK2 promotes cap-dependent translation and identify Furin 1 as its translational target, which is required for the synaptic function of LRRK2. As the regulation of synaptic homeostasis plays a fundamental role in ensuring normal and stable synaptic function, our findings suggest that aberrant function of LRRK2 may lead to destabilization of neural circuits.


Sujet(s)
Protéines de Drosophila/métabolisme , Drosophila melanogaster/métabolisme , Leucine-rich repeat serine-threonine protein kinase-2/métabolisme , Jonction neuromusculaire/métabolisme , Synapses/métabolisme , Animaux , Furine/métabolisme , Cellules HEK293 , Homéostasie , Humains , Larve/métabolisme , Protéines mutantes/métabolisme , Mutation/génétique , Agents neuromédiateurs/métabolisme , Biosynthèse des protéines , Coiffes des ARN/métabolisme , Transduction du signal , Transmission synaptique , Vésicules synaptiques/métabolisme
10.
Neuron ; 74(1): 166-78, 2012 Apr 12.
Article de Anglais | MEDLINE | ID: mdl-22500638

RÉSUMÉ

Homeostatic mechanisms operate to stabilize synaptic function; however, we know little about how they are regulated. Exploiting Drosophila genetics, we have uncovered a critical role for the target of rapamycin (TOR) in the regulation of synaptic homeostasis at the Drosophila larval neuromuscular junction. Loss of postsynaptic TOR disrupts a retrograde compensatory enhancement in neurotransmitter release that is normally triggered by a reduction in postsynaptic glutamate receptor activity. Moreover, postsynaptic overexpression of TOR or a phosphomimetic form of S6 ribosomal protein kinase, a common target of TOR, can trigger a strong retrograde increase in neurotransmitter release. Interestingly, heterozygosity for eIF4E, a critical component of the cap-binding protein complex, blocks the retrograde signal in all these cases. Our findings suggest that cap-dependent translation under the control of TOR plays a critical role in establishing the activity dependent homeostatic response at the NMJ.


Sujet(s)
Protéines de Drosophila/métabolisme , Régulation de l'expression des gènes/physiologie , Homéostasie/physiologie , Jonction neuromusculaire/métabolisme , Protein kinases/métabolisme , Transmission synaptique/physiologie , Animaux , Drosophila , Protéines de Drosophila/génétique , Facteur-4E d'initiation eucaryote/génétique , Facteur-4E d'initiation eucaryote/physiologie , Exocytose/physiologie , Larve/métabolisme , Motoneurones/métabolisme , Mutation , Protein kinases/génétique , Transport des protéines/physiologie , Récepteurs au glutamate/métabolisme , Ribosomal Protein S6 Kinases/métabolisme , Transduction du signal/physiologie , Sérine-thréonine kinases TOR
11.
PLoS Genet ; 8(2): e1002515, 2012 Feb.
Article de Anglais | MEDLINE | ID: mdl-22347817

RÉSUMÉ

miR-124 is conserved in sequence and neuronal expression across the animal kingdom and is predicted to have hundreds of mRNA targets. Diverse defects in neural development and function were reported from miR-124 antisense studies in vertebrates, but a nematode knockout of mir-124 surprisingly lacked detectable phenotypes. To provide genetic insight from Drosophila, we deleted its single mir-124 locus and found that it is dispensable for gross aspects of neural specification and differentiation. On the other hand, we detected a variety of mutant phenotypes that were rescuable by a mir-124 genomic transgene, including short lifespan, increased dendrite variation, impaired larval locomotion, and aberrant synaptic release at the NMJ. These phenotypes reflect extensive requirements of miR-124 even under optimal culture conditions. Comparison of the transcriptomes of cells from wild-type and mir-124 mutant animals, purified on the basis of mir-124 promoter activity, revealed broad upregulation of direct miR-124 targets. However, in contrast to the proposed mutual exclusion model for miR-124 function, its functional targets were relatively highly expressed in miR-124-expressing cells and were not enriched in genes annotated with epidermal expression. A notable aspect of the direct miR-124 network was coordinate targeting of five positive components in the retrograde BMP signaling pathway, whose activation in neurons increases synaptic release at the NMJ, similar to mir-124 mutants. Derepression of the direct miR-124 target network also had many secondary effects, including over-activity of other post-transcriptional repressors and a net incomplete transition from a neuroblast to a neuronal gene expression signature. Altogether, these studies demonstrate complex consequences of miR-124 loss on neural gene expression and neurophysiology.


Sujet(s)
Drosophila melanogaster/génétique , microARN/génétique , Mutation/génétique , Neurogenèse/génétique , Jonction neuromusculaire/génétique , Animaux , Différenciation cellulaire/génétique , Régulation de l'expression des gènes au cours du développement , Techniques de knock-out de gènes , Locomotion/génétique , Jonction neuromusculaire/physiologie , Phénotype , Cellules réceptrices sensorielles/anatomopathologie , Transduction du signal/génétique , Synapses/anatomopathologie , Transcriptome/génétique
12.
Neuron ; 68(5): 879-93, 2010 Dec 09.
Article de Anglais | MEDLINE | ID: mdl-21145002

RÉSUMÉ

Emerging data implicate microRNAs (miRNAs) in the regulation of synaptic structure and function, but we know little about their role in the regulation of neurotransmission in presynaptic neurons. Here, we demonstrate that the miR-310-313 cluster is required for normal synaptic transmission at the Drosophila larval neuromuscular junction. Loss of miR-310-313 cluster leads to a significant enhancement of neurotransmitter release, which can be rescued with temporally restricted expression of mir-310-313 in larval presynaptic neurons. Kinesin family member, Khc-73 is a functional target for miR-310-313 as its expression is increased in mir-310-313 mutants and reducing it restores normal synaptic function. Cluster mutants show an increase in the active zone protein Bruchpilot accompanied by an increase in electron dense T bars. Finally, we show that repression of Khc-73 by miR-310-313 cluster influences the establishment of normal synaptic homeostasis. Our findings establish a role for miRNAs in the regulation of neurotransmitter release.


Sujet(s)
Protéines de Drosophila/génétique , Drosophila/génétique , microARN/génétique , Jonction neuromusculaire/génétique , Transmission synaptique/génétique , Animaux , Drosophila/croissance et développement , Drosophila/métabolisme , Protéines de Drosophila/métabolisme , Kinésine/métabolisme , Larve/génétique , Larve/métabolisme , Motoneurones/métabolisme , Famille multigénique/génétique , Jonction neuromusculaire/métabolisme , Transmission synaptique/physiologie
13.
Neuron ; 66(4): 536-49, 2010 May 27.
Article de Anglais | MEDLINE | ID: mdl-20510858

RÉSUMÉ

Retrograde signaling is essential for coordinating the growth of synaptic structures; however, it is not clear how it can lead to modulation of cytoskeletal dynamics and structural changes at presynaptic terminals. We show that loss of retrograde bone morphogenic protein (BMP) signaling at the Drosophila larval neuromuscular junction (NMJ) leads to a significant reduction in levels of Rac GEF Trio and a diminution of transcription at the trio locus. We further find that Trio is required in motor neurons for normal structural growth. Finally, we show that transgenic expression of Trio in motor neurons can partially restore NMJ defects in larvae mutant for BMP signaling. Based on our findings, we propose a model in which a retrograde BMP signal from the muscle modulates GTPase activity through transcriptional regulation of Rac GEF trio, thereby regulating the homeostasis of synaptic growth at the NMJ.


Sujet(s)
Protéines morphogénétiques osseuses/physiologie , Protéines de Drosophila/biosynthèse , Facteurs d'échange de nucléotides guanyliques/biosynthèse , Motoneurones/physiologie , Jonction neuromusculaire/physiologie , Phosphoprotéines/biosynthèse , Protein-Serine-Threonine Kinases/biosynthèse , Synapses/physiologie , Animaux , Lignée cellulaire , Drosophila , Régulation de l'expression des gènes au cours du développement , Humains , Transduction du signal/physiologie , Synapses/ultrastructure
14.
Neuron ; 41(6): 891-905, 2004 Mar 25.
Article de Anglais | MEDLINE | ID: mdl-15046722

RÉSUMÉ

Highwire (Hiw), a putative RING finger E3 ubiquitin ligase, negatively regulates synaptic growth at the neuromuscular junction (NMJ) in Drosophila. hiw mutants have dramatically larger synaptic size and increased numbers of synaptic boutons. Here we show that Hiw binds to the Smad protein Medea (Med). Med is part of a presynaptic bone morphogenetic protein (BMP) signaling cascade consisting of three receptor subunits, Wit, Tkv, and Sax, in addition to the Smad transcription factor Mad. When compared to wild-type, mutants of BMP signaling components have smaller NMJ size, reduced neurotransmitter release, and aberrant synaptic ultrastructure. BMP signaling mutants suppress the excessive synaptic growth in hiw mutants. Activation of BMP signaling, which in wild-type does not cause additional growth, in hiw mutants does lead to further synaptic expansion. These results reveal a balance between positive BMP signaling and negative regulation by Highwire, governing the growth of neuromuscular synapses.


Sujet(s)
Protéines morphogénétiques osseuses/métabolisme , Différenciation cellulaire/génétique , Protéines de Drosophila/métabolisme , Drosophila melanogaster/croissance et développement , Protéines de tissu nerveux/métabolisme , Jonction neuromusculaire/croissance et développement , Animaux , Protéines morphogénétiques osseuses/génétique , Taille de la cellule/génétique , Protéines de liaison à l'ADN/génétique , Protéines de liaison à l'ADN/métabolisme , Protéines de Drosophila/génétique , Drosophila melanogaster/métabolisme , Drosophila melanogaster/ultrastructure , Microscopie électronique , Motoneurones/cytologie , Motoneurones/métabolisme , Mutation/génétique , Protéines de tissu nerveux/génétique , Jonction neuromusculaire/métabolisme , Jonction neuromusculaire/ultrastructure , Terminaisons présynaptiques/métabolisme , Terminaisons présynaptiques/anatomopathologie , Terminaisons présynaptiques/ultrastructure , Liaison aux protéines/génétique , Récepteurs de surface cellulaire/génétique , Récepteurs de surface cellulaire/métabolisme , Récepteurs TGF-bêta/génétique , Récepteurs TGF-bêta/métabolisme , Transduction du signal/génétique , Protéine Smad-4 , Transmission synaptique/génétique , Transactivateurs/génétique , Transactivateurs/métabolisme
15.
Neuron ; 39(2): 241-54, 2003 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-12873382

RÉSUMÉ

We show that the BMP ortholog Gbb can signal by a retrograde mechanism to regulate synapse growth of the Drosophila neuromuscular junction (NMJ). gbb mutants have a reduced NMJ synapse size, decreased neurotransmitter release, and aberrant presynaptic ultrastructure. These defects are similar to those we observe in mutants of BMP receptors and Smad transcription factors. However, whereas these BMP receptors and signaling components are required in the presynaptic motoneuron, Gbb expression is required in large part in postsynaptic muscles; gbb expression in muscle rescues key aspects of the gbb mutant phenotype. Consistent with this notion, we find that blocking retrograde axonal transport by overexpression of dominant-negative p150/Glued in neurons inhibits BMP signaling in motoneurons. These experiments reveal that a muscle-derived BMP retrograde signal participates in coordinating neuromuscular synapse development and growth.


Sujet(s)
Régulation de l'expression des gènes au cours du développement , Mutation , Acide mycophénolique/analogues et dérivés , Jonction neuromusculaire/croissance et développement , Synapses/physiologie , Facteur de croissance transformant bêta/physiologie , Nucléotides adényliques , Animaux , Cellules cultivées/métabolisme , Système nerveux central/embryologie , Système nerveux central/croissance et développement , Système nerveux central/métabolisme , Drosophila , Protéines de Drosophila/génétique , Protéines de Drosophila/métabolisme , Complexe dynactine , Dynéines/métabolisme , Électrophysiologie , Potentiels évoqués/génétique , Gènes dominants/génétique , Immunohistochimie/méthodes , Hybridation in situ/méthodes , Larve/génétique , Larve/croissance et développement , Larve/métabolisme , Larve/ultrastructure , Microscopie électronique , Protéines associées aux microtubules/métabolisme , Motoneurones/métabolisme , Muscles/métabolisme , Mutation/génétique , Acide mycophénolique/métabolisme , Jonction neuromusculaire/embryologie , Jonction neuromusculaire/métabolisme , Protéines/génétique , Protéines/métabolisme , ARN/biosynthèse , Récepteurs de surface cellulaire/génétique , Récepteurs de surface cellulaire/métabolisme , Transduction du signal/physiologie , Synapses/métabolisme , Synapses/ultrastructure , Transfection , Facteur de croissance transformant bêta/génétique , Ailes d'animaux/embryologie , Ailes d'animaux/croissance et développement
16.
Neuron ; 39(2): 255-67, 2003 Jul 17.
Article de Anglais | MEDLINE | ID: mdl-12873383

RÉSUMÉ

Retrograde signaling plays an important role in synaptic homeostasis, growth, and plasticity. A retrograde signal at the neuromuscular junction (NMJ) of Drosophila controls the homeostasis of neurotransmitter release. Here, we show that this retrograde signal is regulated by the postsynaptic activity of Ca2+/calmodulin-dependent protein kinase II (CaMKII). Reducing CaMKII activity in muscles enhances the signal and increases neurotransmitter release, while constitutive activation of CaMKII in muscles inhibits the signal and decreases neurotransmitter release. Postsynaptic inhibition of CaMKII increases the number of presynaptic, vesicle-associated T bars at the active zones. Consistently, we show that glutamate receptor mutants also have a higher number of T bars; this increase is suppressed by postsynaptic activation of CaMKII. Furthermore, we demonstrate that presynaptic BMP receptor wishful thinking is required for the retrograde signal to function. Our results indicate that CaMKII plays a key role in the retrograde control of homeostasis of synaptic transmission at the NMJ of Drosophila.


Sujet(s)
Protéines de liaison au calcium , Calcium-Calmodulin-Dependent Protein Kinases/physiologie , Jonction neuromusculaire/enzymologie , Jonction neuromusculaire/physiologie , Protéines de Saccharomyces cerevisiae , Transmission synaptique/physiologie , Animaux , Animal génétiquement modifié , Calcium/pharmacologie , Calcium-Calmodulin-Dependent Protein Kinase Type 2 , Calcium-Calmodulin-Dependent Protein Kinases/génétique , Relation dose-effet des médicaments , Drosophila melanogaster , Électrophysiologie , Potentiels post-synaptiques excitateurs/génétique , Potentiels post-synaptiques excitateurs/physiologie , Régulation de l'expression des gènes codant pour des enzymes , Gènes d'insecte , Immunohistochimie , Mannosyltransferases/métabolisme , Mannosyltransferases/physiologie , Glycoprotéines membranaires/métabolisme , Microscopie électronique , Muscles/métabolisme , Muscles/physiologie , Mutagenèse , Protéines de tissu nerveux/métabolisme , Jonction neuromusculaire/ultrastructure , Neurones/métabolisme , Neurones/physiologie , Agents neuromédiateurs , Fragments peptidiques/physiologie , Terminaisons présynaptiques/enzymologie , Terminaisons présynaptiques/ultrastructure , Théorie quantique , Récepteur de l'AMPA/génétique , Récepteur de l'AMPA/physiologie , Synaptotagmines
17.
Neuron ; 33(4): 545-58, 2002 Feb 14.
Article de Anglais | MEDLINE | ID: mdl-11856529

RÉSUMÉ

We conducted a large-scale screen for Drosophila mutants that have structural abnormalities of the larval neuromuscular junction (NMJ). We recovered mutations in wishful thinking (wit), a gene that positively regulates synaptic growth. wit encodes a BMP type II receptor. In wit mutant larvae, the size of the NMJs is greatly reduced relative to the size of the muscles. wit NMJs have reduced evoked excitatory junctional potentials, decreased levels of the synaptic cell adhesion molecule Fasciclin II, and synaptic membrane detachment at active zones. Wit is expressed by a subset of neurons, including motoneurons. The NMJ phenotype is specifically rescued by transgenic expression of Wit only in motoneurons. Thus, Wit appears to function as a presynaptic receptor that regulates synaptic size at the Drosophila NMJ.


Sujet(s)
Plan d'organisation du corps/génétique , Système nerveux central/malformations , Protéines de Drosophila/génétique , Drosophila melanogaster/embryologie , Régulation de l'expression des gènes au cours du développement/physiologie , Mutation/génétique , Jonction neuromusculaire/malformations , Protein-Serine-Threonine Kinases/génétique , Animaux , Animal génétiquement modifié/malformations , Animal génétiquement modifié/croissance et développement , Animal génétiquement modifié/métabolisme , Récepteurs de la protéine morphogénique osseuse de type II , Protéines morphogénétiques osseuses/génétique , Protéines morphogénétiques osseuses/métabolisme , Adhérence cellulaire/génétique , Système nerveux central/croissance et développement , Système nerveux central/ultrastructure , Régulation négative/génétique , Protéines de Drosophila/isolement et purification , Drosophila melanogaster/croissance et développement , Drosophila melanogaster/ultrastructure , Venins des élapidés/métabolisme , Femelle , Dépistage génétique , Mâle , Données de séquences moléculaires , Jonction neuromusculaire/croissance et développement , Jonction neuromusculaire/ultrastructure , Plasticité neuronale/génétique , Agents neuromédiateurs/génétique , Agents neuromédiateurs/métabolisme , Protein-Serine-Threonine Kinases/isolement et purification , Similitude de séquences d'acides aminés , Similitude de séquences d'acides nucléiques , Transduction du signal/génétique , Membranes synaptiques/génétique , Membranes synaptiques/métabolisme , Membranes synaptiques/ultrastructure
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE