Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 7 de 7
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Sci Total Environ ; 912: 169594, 2024 Feb 20.
Article de Anglais | MEDLINE | ID: mdl-38154642

RÉSUMÉ

Microplastics (MPs) have entered drinking water (DW) via various pathways, raising concerns about their potential health impacts. This study provides a comprehensive review of MP-associated chemicals, such as oligomers, plasticizers, stabilizers, and ultraviolet (UV) filters that can be leached out during DW treatment and distribution. The leaching of these chemicals is influenced by various environmental and operating factors, with three major ones identified: MP concentration and polymer type, pH, and contact time. The leaching process is substantially enhanced during the disinfection step of DW treatment, due to ultraviolet light and/or disinfectant-triggered reactions. The study also reviewed human exposure to MPs and associated chemicals in DW, as well as their health impacts on the human nervous, digestive, reproductive, and hepatic systems, especially the neuroendocrine toxicity of endocrine-disrupting chemicals. An overview of MPs in DW, including tap water and bottled water, was also presented to enable a background understanding of MPs-associated chemicals. In short, certain chemicals leached from MPs in DW can have significant implications for human health and demand further research on their long-term health impacts, mitigation strategies, and interactions with other pollutants such as disinfection byproducts (DBPs) and per- and polyfluoroalkyl substances (PFASs). This study is anticipated to facilitate the research and management of MPs in DW and beverages.


Sujet(s)
Eau de boisson , Polluants chimiques de l'eau , Purification de l'eau , Humains , Microplastiques , Matières plastiques , Eau de boisson/composition chimique , Polymères , Polluants chimiques de l'eau/analyse
2.
Water Res ; 246: 120699, 2023 Nov 01.
Article de Anglais | MEDLINE | ID: mdl-37820510

RÉSUMÉ

The recovery of phosphorus from wastewater is a critical step in addressing the scarcity of phosphorus resources. Electro-driven technologies for phosphorus enrichment have gathered significant attention due to their inherent advantages, such as mild operating conditions, absence of secondary pollution, and potential integration with other technologies. This study presents a comprehensive review of recent advancements in the field of phosphorus enrichment, with a specific focus on capacitive deionization and electrodialysis technologies. It highlights the underlying principles and effectiveness of electro-driven techniques for phosphorus enrichment while systematically comparing energy consumption, enrichment rate, and concentration factor among different technologies. Furthermore, the study provides a thorough analysis of the capacity of various technologies to selectively enrich phosphorus and proposes several methods and strategies to enhance selectivity. These insights offer valuable guidance for advancing the future development of electrochemical techniques with enhanced efficiency and effectiveness in phosphorus enrichment from wastewater.


Sujet(s)
Eaux usées , Purification de l'eau , Phosphore , Purification de l'eau/méthodes , Technologie
3.
Bioresour Technol ; 369: 128434, 2023 Feb.
Article de Anglais | MEDLINE | ID: mdl-36473585

RÉSUMÉ

Scenedesmus dimorphus was cultivated in raw and pretreated swine wastewater (SW) with 6-L photobioreactors (PBRs) to investigate the effect of solid-liquid separation on algal growth. The same aerated PBRs containing no algae were used as control. Moderate COD and nitrogen removal from the SW was achieved with the algal PBRs. However, compared to the control reactors, they offered no consistent treatment boost. Improved algal growth occurred in the pretreated SW, as measured by maximum algal cell count (3202 ± 275 × 106 versus 2286 ± 589 × 106 cells L-1) and cell size. The enhanced algal growth in the pretreated SW resulted in relatively high nitrogen (5.7 %) and organic matter contents in the solids harvested at the end of cultivation experiments, with ∼25.6 % of nitrogen in the SW retained in the solids and ∼9.1 % absorbed by algae. The pretreatment also resulted in elevated phosphorus removal. This study is anticipated to foster the development of microalgae-based SW treatment processes.


Sujet(s)
Chlorophyceae , Microalgues , Scenedesmus , Purification de l'eau , Animaux , Suidae , Eaux usées , Photobioréacteurs , Purification de l'eau/méthodes , Azote/analyse , Phosphore , Biomasse
4.
Materials (Basel) ; 14(18)2021 Sep 10.
Article de Anglais | MEDLINE | ID: mdl-34576419

RÉSUMÉ

Pakistan, an agricultural country, raises 146.5 million commercial and domestic poultry birds, which generate around 544,831 tons of waste per year. This waste finds its final disposal in agricultural land as soil fertilizer or disposal site amendment. The usage of poultry litter for this purpose is uncontrolled, which results in environmental degradation such as emission of greenhouse gases, e.g., methane. However, alternative options such as thermochemical conversion of poultry litter can offer better solutions where this waste can be used as a low-cost carbon source for the synthesis of Multiwalled Carbon Nanotubes (MWCNTs). In this study, efforts were made to utilize this cheap and plentiful carbon source for the synthesis of CNTs in the presence of Ni/Mo/MgO as a catalyst, through pyrolysis. For a better yield of carbon product, the optimum ratio for the catalysts (Ni/Mo/MgO) was found to be 4:0.2:1. Furthermore, the process parameters were also optimized for better carbon yield. A good yield of CNTs resulted from a pyrolysis time of 12 min, a temperature of 825 °C, and a catalyst weight of 100 mg. The structure and morphology of the produced nanotubes were confirmed through X-ray Diffractometer (X-RD) and Scanning Electron Microscopy (SEM). The environmental application of the nanotubes was tested in a synthetic chromium solution in the lab using a batch experiment. Different experimental conditions (pH, adsorbent dosage, and contact time) were optimized to improve the adsorption of Cr (VI) by carbon nanotubes and a UV-Visible spectrophotometer was used at 540 nm to measure the absorbance of Cr (VI). The results showed that up to 81.83% of Cr (VI) removal was achieved by using 8 mg of CNTs at pH 3 with 400 rpm at 180 min of contact time. Thus, it was concluded that poultry litter can be a useful source for the synthesis of MWCNTs and thereby removal of Cr (VI) from industrial tanneries' wastewater.

5.
Sci Rep ; 11(1): 3790, 2021 02 15.
Article de Anglais | MEDLINE | ID: mdl-33589710

RÉSUMÉ

The heavy metals, such as Cr(VI), Pb(II) and Cd(II), in aqueous solutions are toxic even at trace levels and have caused adverse health impacts on human beings. Hence the removal of these heavy metals from the aqueous environment is important to protect biodiversity, hydrosphere ecosystems, and human beings. In this study, magnetic Nickel-Ferrite Nanoparticles (NFNs) were synthesized by co-precipitation method and characterized using X-Ray Diffraction (XRD), Energy Dispersive Spectroscopy (EDS) and Field Emission Scanning Electronic Microscopy (FE-SEM) techniques in order to confirm the crystalline structure, composition and morphology of the NFN's, these were then used as adsorbent for the removal of Cr(VI), Pb(II) and Cd(II) from wastewater. The adsorption parameters under study were pH, dose and contact time. The values for optimum removal through batch-adsorption were investigated at different parameters (pH 3-7, dose: 10, 20, 30, 40 and 50 mg and contact time: 30, 60, 90, and 120 min). Removal efficiencies of Cr(VI), Pb(II) and Cd(II) were obtained 89%, 79% and 87% respectively under optimal conditions. It was found that the kinetics followed the pseudo second order model for the removal of heavy metals using Nickel ferrite nanoparticles.

6.
Sci Rep ; 10(1): 15802, 2020 09 25.
Article de Anglais | MEDLINE | ID: mdl-32978488

RÉSUMÉ

Grasses have been used widely to remediate contaminants present in domestic wastewater, but leachate generated from municipal solid waste that usually contain some concentrations of heavy metals has never been reported to be treated with grasses, especially Rhodes grass. A series of experiments was performed to investigate the contaminant uptake from municipal solid waste leachate by Chloris gayana (Rhodes grass) grown in combination with two commonly available grass varieties namely Vetiveria zizanioides (Vetiver grass) and Pennisetum purpureum (Elephant grass). Leachate used for the experiments had high values for chemical oxygen demand (5 g/L), pH (8.5), electrical conductivity (9.0 mS/cm), nitrates (182.1 mg/L), phosphates 6.4 mg/L along with heavy metals i.e. copper, zinc and manganese. Different dilutions of leachate ranging from 0 to 100% were applied in batches and their result showed that collectively all the grasses reduced overall contaminant concentrations. These were reported for chemical oxygen demand, electrical conductivity, nitrates, and phosphates reduced up to 67, 94, 94, and 73%, respectively. Metals uptake by grasses also showed a significant decrease in applied dose i.e. zinc (97%), copper (89%), and manganese (89%). Plant analysis showed that all grasses showed preference to heavy metals uptake e.g. Rhodes grass favoured up taking zinc, Elephant grass for copper and Vetiver grass preferred manganese. Overall growth performance of Rhodes grass was better in dilute leachate, whereas in more concentrated leachate, Rhodes grass did not perform better and production of biomass decreased. In Vetiver grass, root and shoot lengths decreased with increasing leachate strength, but the biomass did not change significantly.

7.
Carbohydr Polym ; 113: 249-55, 2014 Nov 26.
Article de Anglais | MEDLINE | ID: mdl-25256482

RÉSUMÉ

The aim of present work was to isolate cellulose from cotton gin waste (CGW) and synthesis of carboxymethyl cellulose (CMC) from it. Scoured and bleached CGW was used to investigate the effects of temperature, reaction time, acid-base concentration on the physiology of the resultant cellulose polymer. The isolated cellulose from CGW was converted to CMC by etherification using sodium monochloroacetic acid and different sodium hydroxide (NaOH) concentrations (5-40 g/100mL) were tested to get high quality product. The optimum condition for carboxymethylation was found to be 20 g/100mL NaOH which provided the highest viscosity and degree of substitution (DS=0.874). Isolated cellulose and CMC were characterized using Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscopy (SEM). FT-IR analysis revealed that the produced cellulose was of very good quality. Furthermore, X-ray diffraction (XRD) analysis spotlighted crystalline nature of cellulose. SEM images showed rough structure of cellulose while that of the CMC had a smooth surface. This optimized method will be tested at pilot scale in collaboration with local industry.

SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE
...