Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 11 de 11
Filtrer
Plus de filtres










Base de données
Gamme d'année
1.
Water Sci Technol ; 87(6): 1454-1464, 2023 Mar.
Article de Anglais | MEDLINE | ID: mdl-37001159

RÉSUMÉ

Denitrifying woodchip bioreactors are passive, low-tech systems primarily designed to remove nitrate from shallow ground waters as well as point source discharges. Despite their capacity to achieve constant nitrate removal over several years, natural aquatic environments may be affected by the leaching of dissolved organic matter (DOM) from fresh woodchips during start-up. Simple on-site measures might reduce the woodchip leachate during start-up and thus add to the overall environmental sustainability of woodchip bioreactor installations. The aim of the study was to investigate whether foam fractionators could provide an effective solution. Water was flowed through fresh laboratory-scale woodchip bioreactors and recirculated through foam fractionators for 11 days. The bioreactors removed nitrate but increased phosphate and ammonia, which were not effectively removed via foam fractionation. However, foam fractionation did remove 37.8 ± 4.7% of the dissolved chemical oxygen demand (CODdiss) leached during the first 11 days of operation. Fluorescence spectroscopy revealed that the DOM composition differed between the foam and water, where the foam fraction contained higher amounts of DOM associated with the highest bioavailability and hence the greatest potential environmental impact. Optimised foam fractionators could therefore help to reduce the environmental impact of DOM leachate from woodchip bioreactors during start-up.


Sujet(s)
Dénitrification , Nitrates , Matière organique dissoute , Bioréacteurs , Eau
2.
Environ Sci Technol ; 57(1): 626-634, 2023 01 10.
Article de Anglais | MEDLINE | ID: mdl-36511650

RÉSUMÉ

Conventional Fenton treatment is fundamentally impractical for large-scale applications, as the consumption of Fe(II), H2O2, and pH regulators and the accumulation of iron hydroxide sludge are very costly. This paper describes a new method for Fenton treatment of complex wastewater without additional dosing of Fe(II) and H2O2, without iron-sludge accumulation, and with less consumption of pH regulators, using a novel bioelectrode system. Our new system includes a novel three-chamber microbial electrolysis unit and Fenton reaction unit, where Fenton reagents are generated by biotic and abiotic cathodes, while the bioanode simultaneously degrades biodegradable organics from the wastewater. The system's self-alkalinity buffering also waives the need for pH regulators. Dissolved organic carbon and 22 specific recalcitrant organics were removed by 99% and between 78 and 100%, respectively. The bioelectrode system generated 13 ± 3 mg/L dissolved Fe(II) and 5 ± 0.4 mg/L H2O2 for the Fenton reaction unit. The closed iron cycle avoided iron loss and iron sludge accumulation during operation. The pH regulator dosage and operating costs were just 9.7 and 1.4%, respectively, of what is required by classic Fenton. The low operating cost and reduction in chemical usage make it an efficient, sustainable alternative to the conventional treatment processes currently used for complex wastewater.


Sujet(s)
Eaux usées , Polluants chimiques de l'eau , Eaux d'égout , Peroxyde d'hydrogène , Oxydoréduction , Fer , Composés du fer II , Élimination des déchets liquides
3.
Sci Total Environ ; 828: 154543, 2022 Jul 01.
Article de Anglais | MEDLINE | ID: mdl-35302016

RÉSUMÉ

Bio-electro-Fenton (BEF) processes have been widely studied in recent years to remove recalcitrant micropollutants from wastewater. Though promising, it still faces the critical challenge of residual iron and iron sludge in the treated effluent. Thus, an innovative medium-pressure ultraviolet-catalyzed bio-electrochemical system (MUBEC), in which medium-pressure ultraviolet was employed as an alternative to iron for in-situ H2O2 activation, was developed for the removal of recalcitrant micropollutants. The influence of operating parameters, including initial catholyte pH, cathodic aeration rate, and input voltage, on the system performance, was explored. Results indicated that complete reduction of 10 mg L-1 of model micro-pollutants ibuprofen (IBU) and carbamazepine (CBZ) was achieved at pH 3, with an aeration rate of 1 mL min-1 and a voltage of 0.3 V, following pseudo-first-order kinetics. Moreover, potential transformation pathways and the associated intermediates during the degradation were deduced and detected, respectively. Thus, the MUBEC system shows the potential for the efficient and cost-effective degradation of recalcitrant micropollutants from wastewater.


Sujet(s)
Eaux usées , Polluants chimiques de l'eau , Catalyse , Peroxyde d'hydrogène/métabolisme , Fer , Oxydoréduction , Rayons ultraviolets , Polluants chimiques de l'eau/analyse
4.
J Hazard Mater ; 427: 127889, 2022 Apr 05.
Article de Anglais | MEDLINE | ID: mdl-34863559

RÉSUMÉ

Conventional wastewater treatment plants (WWTPs) cannot remove organic micropollutants efficiently, and thus various polishing processes are increasingly being studied. One such potential process is utilising biogenic manganese oxides (BioMnOx). The present study operated two moving bed biofilm reactors (MBBRs) with synthetic sewage as feed, one reactor feed was spiked with Mn(II) which allowed the continuous formation of BioMnOx by Mn-oxidising bacteria in the suspended biofilms (i.e. BioMn-MBBR). Spiking experiments with 14 micropollutants were conducted to investigate if BioMnOx combined with MBBR could be utilised to polish micropollutants in wastewater treatment. Results show enhanced removal by BioMn-MBBR over control MBBR (without BioMnOx) for specific micropollutants, such as diclofenac (36% vs. 5%) and sulfamethoxazole (80% vs. 24%). However, diclofenac removal was significantly inhibited when municipal wastewater was fed, and a further batch experiment demonstrates the reduced removal of diclofenac could be due to (unusual) higher pH in municipal wastewater compared to synthetic sewage. A shift in bacterial community was also observe in BioMn-MBBR over long-term operation. Overall, BioMn-MBBR in this study shows great potential for practical application in removing a larger range of micropollutants, which could be applied as an efficient polishing step for typical municipal wastewater.


Sujet(s)
Biofilms , Eaux usées , Bioréacteurs , Manganèse , Oxydes , Pologne , Élimination des déchets liquides
5.
J Hazard Mater ; 423(Pt B): 127151, 2022 02 05.
Article de Anglais | MEDLINE | ID: mdl-34536845

RÉSUMÉ

Wastewater from pharmaceutical and related industries contains many residual pharmaceutical components rich in color and high COD contents, which cannot be removed through the traditional wastewater treatment processes. Recently, microbial electrolysis ultraviolet cell (MEUC) process has shown its promising potential to remove recalcitrant organics because of its merits of wide pH range, iron-free, and without complications of iron sludge production. However, its application to the real pharmaceutical-rich industrial wastewater is still unknown. In this study, the MEUC process was validated with real ciprofloxacin-rich (6863.79 ± 2.21 µg L-1) industrial wastewater (6840 ± 110 mg L-1 of COD). The MEUC process achieved 100% removal of ciprofloxacin, 100% decolorization, and 99.1% removal of COD within 12, 60 and 30 h, respectively, when it was operated at pH-controlled at 7.8, applied voltage of 0.6 V, UV intensity of 10 mW cm-2, and cathodic aeration velocity of 0.005 mL min-1 mL-1. Moreover, fluorescence analysis showed that protein- and humic-like substances in such wastewater were effectively removed, providing further evidence of its high treatment efficiency. Furthermore, eco-toxicity testing with luminescent bacteria Vibro Feschri confirmed that the treated effluent was utterly non-toxic. The results demonstrated the broad application potential of MEUC technology for treating industrial wastewater.


Sujet(s)
Eaux usées , Purification de l'eau , Industrie pharmaceutique , Électrochimie , Déchets industriels/analyse , Élimination des déchets liquides
6.
J Hazard Mater ; 416: 125905, 2021 08 15.
Article de Anglais | MEDLINE | ID: mdl-34492840

RÉSUMÉ

Bio-electro-Fenton is emerging as an alternative technology for the efficient and cost-effective removal of refractory micropollutants. Though promising, there are still several challenges that limit its wide application, including acidic operating conditions (pH at 2-3), the addition of supporting electrolytes (e.g., Na2SO4), and the issue of iron sludge generation. To address these challenges, a novel hybrid persulfate-photo-bioelectrochemical (PPBEC) system is proposed to remove model micropollutants (carbamazepine and clorfibric acid), from secondary effluent at low persulfate (PS) dosage and neutral pH. The effect of crucial operating parameters on the process was studied, including input voltage, cathodic aeration velocity, and PS dose. Under optimal conditions (0.6 V, 0.005 mL min-1 mL-1 and 1 mM), the PPBEC system achieved approx. 0.56-1.71 times greater micropollutant removal with 93% lower energy consumption when compared to the individual processes (UV/PS and PBEC). The improved performance was attributed to a faster production of sulfate radicals by UV irradiation, hydrogen peroxide activation and single-electron reduction, and hydroxyl radicals generated by UV irradiation. Furthermore, the transformation products of carbamazepine and clorfibric acid were identified and the probable pathways are proposed. Finally, the ecotoxicity of the PPBEC treated effluent was assessed by using Vibrio Fischeri, which exhibited a non-toxic effect.


Sujet(s)
Polluants chimiques de l'eau , Peroxyde d'hydrogène , Concentration en ions d'hydrogène , Oxydoréduction , Rayons ultraviolets , Polluants chimiques de l'eau/analyse
7.
J Hazard Mater ; 403: 123536, 2021 02 05.
Article de Anglais | MEDLINE | ID: mdl-32823027

RÉSUMÉ

Moving bed biofilm reactors (MBBRs) were placed at two wastewater treatment plants, where they were constantly fed with effluent and intermittently fed with primary wastewater. Each reactor was subjected to different feast/famine periods and flow rates of primary wastewater, thus the different organic and nutrient loads (chemical oxygen demand(COD), ammonium(NH4-N)) resulted in different feast-famine conditions applied to the biomass. In batch experiments, this study investigated the effects of various feast-famine conditions on the biodegradation of micropollutants by MBBRs applied as an effluent polishing step. Rate constants of micropollutant removals were found to be positively correlated to the load of the total COD and NH4-N, indicating that higher organic loads were favourable for the growth of micropollutant degraders in these MBBRs. Rate constant of atenolol was five times higher when the biomass was fed with the highest COD and NH4-N load than it was fed with the lowest COD and NH4-N load. For diclofenac, mycophenolic acid and iohexol, their maximum rate constants were obtained with feeding of COD and NH4-N of approximately 570 mgCOD/d and 40∼60 mgNH4-N/d respectively. This also supports the concept that co-metabolism (rather competition inhibition or catabolic repression) plays an important role in micropollutants biodegradation in wastewater.


Sujet(s)
Biofilms , Élimination des déchets liquides , Dépollution biologique de l'environnement , Bioréacteurs , Eaux usées
8.
Chemosphere ; 259: 127397, 2020 Nov.
Article de Anglais | MEDLINE | ID: mdl-32599380

RÉSUMÉ

A hybrid wastewater treatment process with combined attached biofilm (moving bed biofilm reactor) and activated sludge, named as Hybas™, was implemented for the treatment of municipal wastewater. The system consisted of six staged reactors in series including pre-denitrification and nitrification in the Hybas™ line and post-denitrification in a pure MBBR. In addition to the significant removal of nutrients and organic matter from municipal wastewater, Hybas™ also showed removal capacity for pharmaceuticals. Of particular interest was the enhanced removal for pharmaceuticals (i.e. X-ray contrast media) compared to other biological systems. Spiking experiments showed that the maximum removal rate constants (k, h-1) for 10 out of the 21 investigated pharmaceuticals (including diclofenac) were observed to occur within the two aerobic Hybas ™ reactors, operated in a flow-shifting mode that allows even biofilm growth of nitrifying bacteria. In total, 14 out of the 21 pharmaceuticals were removed by more than 50% during continuous flow operation in the all Hybas™ line and post-denitrification MBBR. The calculated and estimated removal contributions of pharmaceuticals by each individual reactor were also assessed.


Sujet(s)
Préparations pharmaceutiques , Élimination des déchets liquides/méthodes , Polluants chimiques de l'eau , Biofilms/croissance et développement , Bioréacteurs , Nitrification , Eaux d'égout/microbiologie , Eaux usées
9.
Appl Spectrosc ; 69(1): 124-9, 2015 Jan.
Article de Anglais | MEDLINE | ID: mdl-25506735

RÉSUMÉ

Water utilities supplying recycled water to households via a "third-pipe" or "dual reticulation" system have a need for a rapid, portable method to detect cross-connections within potable water reticulation networks. This study evaluates portable fluorimetry as a technique for cross-connection detection in the field. For the first time, an investigation of a full-scale dual reticulation water-recycling network has been carried out to identify cross-connections using a portable fluorimeter. We determined that this can be carried out with a 3 mL water sample, and unlike methods that are currently in use for cross-connection detection, can be achieved quickly without disruption to water flow or availability within the network. It was also revealed that fluorescence trigger values could be established with high levels of confidence by sampling less than 2.5% of the network. Fluorescence analysis was also able to uncover a single, real cross-connection event. As such, this paper is a fundamental demonstration of fluorescence as a reliable, highly portable technique for cross-connection detection within dual reticulation water recycling networks and further establishes the abilities of fluorescence devices as valuable field instruments for water quality monitoring.

10.
Environ Monit Assess ; 185(11): 9321-32, 2013 Nov.
Article de Anglais | MEDLINE | ID: mdl-23729161

RÉSUMÉ

The assessment of potential impacts of wastewater effluent discharges in freshwater systems requires an understanding of the likely degrees of dilution and potential zones of influence. In this study, four tracers commonly present in wastewater effluents were monitored to compare their relative effectiveness in determining areas in freshwater systems that are likely to be impacted by effluent discharges. The four tracers selected were the human pharmaceutical carbamazepine, anthropogenic gadolinium, fluorescent-dissolved organic matter (fDOM), and electrical conductivity (EC). The four tracers were monitored longitudinally in two distinct freshwater systems receiving wastewater effluents, where one site had a high level of effluent dilution (effluent <1% of total flow) and the other site had a low level of effluent dilution (effluent ∼50% of total flow). At both sites, the selected tracers exhibited a similar pattern of response intensity downstream of discharge points relative to undiluted wastewater effluent, although a number of anomalies were noted between the tracers. Both EC and fDOM are non-specific to human influences, and both had a high background response, relative to the highly sensitive carbamazepine and anthropogenic gadolinium responses, although the ease of measuring EC and fDOM would make them more adaptable in highly variable systems. However, the greater sensitivity and selectivity of carbamazepine and gadolinium would make their combination with EC and fDOM as tracers of wastewater effluent discharges highly desirable to overcome potential limitations of individual tracers.


Sujet(s)
Surveillance de l'environnement/méthodes , Rivières/composition chimique , Élimination des déchets liquides , Eaux usées/analyse , Polluants chimiques de l'eau/analyse , Eaux usées/statistiques et données numériques
11.
Environ Sci Technol ; 45(7): 2909-16, 2011 Apr 01.
Article de Anglais | MEDLINE | ID: mdl-21361278

RÉSUMÉ

Organic matter (OM) is a ubiquitous constituent of natural waters quantifiable at very low levels using fluorescence spectroscopy. This technique has recognized potential in a range of applications where the ability to monitor water quality in real time is desirable, such as in water treatment systems. This study used PARAFAC to characterize a large (n=1479) and diverse excitation emission matrix (EEM) data set from six recycled water treatment plants in Australia, for which sources of variability included geography, season, treatment processes, pH and fluorometer settings. Five components were identified independently in four or more plants, none of which were generated during the treatment process nor were typically entirely removed. PARAFAC scores could be obtained from EEMs by simple regression. The results have important implications for online monitoring of OM fluorescence in treatment plants, affecting choices regarding experimental design, instrumentation and the optimal wavelengths for tracking fluorescent organic matter through the treatment process. While the multimodel comparisons provide a compelling demonstration of PARAFAC's ability to distill chemical information from EEMs, deficiencies identified through this process have broad implications for interpreting and reusing (D)OM-PARAFAC models.


Sujet(s)
Surveillance de l'environnement/méthodes , Eau douce/composition chimique , Modèles chimiques , Élimination des déchets liquides/méthodes , Polluants chimiques de l'eau/analyse , Fluorescence , Alimentation en eau/analyse
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE