Your browser doesn't support javascript.
loading
Montrer: 20 | 50 | 100
Résultats 1 - 3 de 3
Filtrer
Plus de filtres











Base de données
Gamme d'année
1.
Cell Death Dis ; 13(8): 688, 2022 08 06.
Article de Anglais | MEDLINE | ID: mdl-35933423

RÉSUMÉ

cAMP Responsible Element Binding Protein (CREB) is an evolutionarily conserved transcriptional factor that regulates cell growth, synaptic plasticity and so on. In this study, we unexpectedly found proteasome inhibitors, such as MLN2238, robustly increase CREB activity in adult flies through a large-scale compound screening. Mechanistically, reactive oxidative species (ROS) generated by proteasome inhibition are required and sufficient to promote CREB activity through c-Jun N-terminal kinase (JNK). In 293 T cells, JNK activation by MLN2238 is also required for increase of CREB phosphorylation at Ser133. Meanwhile, transcriptome analysis in fly intestine identified a group of genes involved in redox and proteostatic regulation are augmented by overexpressing CRTC (CREB-regulated transcriptional coactivator). Intriguingly, CRTC overexpression in muscles robustly restores protein folding and proteasomal activity in a fly Huntington's disease (HD) model, and ameliorates HD related pathogenesis, such as protein aggregates, motility, and lifespan. Moreover, CREB activity increases during aging, and further enhances its activity can suppress protein aggregates in aged muscles. Together, our results identified CRTC/CREB downstream ROS/JNK signaling as a conserved sensor to tackle oxidative and proteotoxic stresses. Boosting CRTC/CREB activity is a potential therapeutic strategy to treat aging related protein aggregation diseases.


Sujet(s)
Protéine de liaison à l'élément de réponse à l'AMP cyclique , Drosophila , Animaux , Protéines de transport/métabolisme , Protéine de liaison à l'élément de réponse à l'AMP cyclique/génétique , Protéine de liaison à l'élément de réponse à l'AMP cyclique/métabolisme , Drosophila/génétique , Drosophila/métabolisme , Phosphorylation , Agrégats de protéines , Espèces réactives de l'oxygène/métabolisme
2.
iScience ; 24(6): 102507, 2021 Jun 25.
Article de Anglais | MEDLINE | ID: mdl-34308280

RÉSUMÉ

Lipid digestion and absorption are tightly regulated to cope with metabolic demands among tissues. How these processes are coordinated is not well characterized. Here, we found that mifepristone (RU486) prevents lipid digestion both in flies and mice. In flies, RU486 administration suppresses lipid digestion by transcriptional downregulating Magro in guts. Similarly, intestinal lipid uptake in mice was also suppressed by RU486 through the glucocorticoid receptor (GR). Further studies showed that the pancreatic lipase Pnlip is a direct transcriptional target of GR in pancreas tissues. Glucocorticoid levels in mice fed a high fat diet (HFD) are significantly lower than those fed on a conventional diet, and RU486 administration inhibits HFD-induced obesity both in mice and flies. Our findings identified a novel mechanism of RU486 functions as a GR antagonist systematically regulating lipid metabolism, providing new insight on the role of Glucocorticoid/GR in Cushing disease, diabetes, and other related metabolic syndromes.

3.
Biol Open ; 9(6)2020 06 14.
Article de Anglais | MEDLINE | ID: mdl-32487516

RÉSUMÉ

Large-scale compound screening in adult flies is hampered by the lack of continuous drug delivery systems and poor solubility of numerous compounds. Here we found that gum Arabic (Acacia/Senegal gum), a widely used stabilizer, can also emulsify lipophilic compounds and profoundly increase their accessibility to target tissues in Drosophila and mice. We further developed a gum Arabic-based drug delivery system, wherein the drug was ground into gum Arabic and emulsified in liquid food fed to flies by siphoning through a U-shape glass capillary. This system did not affect food intake nor cell viability. Since drugs were continuously delivered by siphoning, minimal compound waste and less frequent food changes make this system ideal for large-scale long-term screenings. In our pilot screening for antitumor drugs in the NCI DTP library, we used a Drosophila model of colorectal cancer and identified two drugs that are especially hydrophobic and were not identified in previous screenings. Our data demonstrated that gum Arabic facilitates drug delivery in animal models and the system is suitable for long-term high-throughput drug screening in Drosophila This system would accelerate drug discovery for chronic and cognitive conditions.


Sujet(s)
Drosophila/effets des médicaments et des substances chimiques , Vecteurs de médicaments , Systèmes de délivrance de médicaments , Gomme arabique , Animaux , Lignée cellulaire , Cellules cultivées , Vecteurs de médicaments/composition chimique , Gomme arabique/composition chimique , Interactions hydrophobes et hydrophiles , Souris , Micelles , Préparations pharmaceutiques/composition chimique , Acides phosphatidiques/composition chimique , Triglycéride/composition chimique
SÉLECTION CITATIONS
DÉTAIL DE RECHERCHE